Chatbot Overview
Conversational Bots
Intents & Entities
Intelligent Bots
Kore.ai's Approach
Kore.ai Conversational Platform
Bot Concepts and Terminology
Natural Language Processing (NLP)
Bot Types
Bot Tasks
Starting with Kore.ai Platform
How to Access Bot Builder
Working with Kore.ai Bot Builder
Building your first Bot
Getting Started with Building Bots
Using the Dialog Builder Tool
Creating a Simple Bot
Release Notes
Latest Updates
Older Releases
Deprecations
Bot Builder
Creating a Bot
Design
Develop
Storyboard
Dialog Task
User Intent Node
Dialog Node
Entity Node
Supported Entity Types
Composite Entities
Supported Time Zones
Supported Colors
Supported Company Names
Form Node
Logic Node
Message Nodes
Confirmation Nodes
Service Node
Custom Authentication
2-way SSL for Service nodes
Script Node
Agent Transfer Node
WebHook Node
Grouping Nodes
Connections & Transitions
Managing Dialogs
Prompt Editor
Alert Tasks
Alert Tasks
Ignore Words and Field Memory
Digital Forms
Digital Views
Knowledge Graph
Terminology
Building
Generation
Importing and Exporting
Analysis
Knowledge Extraction
Small Talk
Action & Information Task
Action Tasks
Information Tasks
Establishing Flows
Natural Language
Overview
Machine Learning
ML Model
Fundamental Meaning
NLP Settings and Guidelines
Knowledge Graph Training
Traits
Ranking and Resolver
NLP Detection
Advanced NLP Configurations
Bot Intelligence
Overview
Context Management
Session and Context Variables
Context Object
Dialog Management
Sub-Intents
Amend Entity
Multi-Intent Detection
Sentiment Management
Tone Analysis
Sentiment Management
Default Conversations
Default Standard Responses
Channel Enablement
Test & Debug
Talk to Bot
Utterance Testing
Batch Testing
Record Conversations
Publishing your Bot
Analyzing your Bot
Overview
Dashboard
Custom Dashboard
Conversation Flows
Bot Metrics
Advanced Topics
Bot Authorization
Language Management
Collaborative Development
IVR Integration
Data Table
Universal Bots
Defining
Creating
Training
Customizing
Enabling Languages
Smart Bots
Defining
Sample Bots
Github
Asana
Travel Planning
Flight Search
Event Based Bot Actions
koreUtil Libraries
Bot Settings
Bot Functions
General Settings
PII Settings
Customizing Error Messages
Bot Management
Bot Versioning
Using Bot Variables
API Guide
API Overview
API List
API Collection
SDKs
SDK Overview
SDK Security
SDK App Registration
Web SDK Tutorial
Message Formatting and Templates
Mobile SDK Push Notification
Widget SDK Tutorial
Widget SDK – Message Formatting and Templates
Web Socket Connect & RTM
Using the BotKit SDK
Installing
Configuring
Events
Functions
BotKit SDK Tutorial – Agent Transfer
BotKit SDK Tutorial – Flight Search Sample Bot
Using an External NLP Engine
Bot Administration
Bots Admin Console
Dashboard
User Management
Managing Users
Managing Groups
Managing Role
Bots Management
Enrollment
Inviting Users
Bulk Invites
Importing Users
Synchronizing Users from AD
Security & Compliance
Using Single Sign-On
Security Settings
Cloud Connector
Analytics
Billing
How Tos
Creating a Simple Bot
Creating a Banking Bot
Transfer Funds Task
Update Balance Task
Context Switching
Using Traits
Schedule a Smart Alert
Configure Digital Forms
Add Form Data into Data Tables
Configuring Digital Views
Add Data to Data Tables
Update Data in Data Tables
Custom Dashboard
Custom Tags to filter Bot Metrics
Patterns for Intents & Entities
Build Knowledge Graph
Global Variables
Content Variables
Using Bot Functions
Configure Agent Transfer
  1. Home
  2. Docs
  3. Bots
  4. Chatbot Overview
  5. Getting Started with Building Bots

Getting Started with Building Bots

This section contains topics that describe the process of creating and publishing bots, enabling and using Natural Language Processing for your bots created using the Kore.ai Bot Builder tool.

If you are new to Bot Builder and want to familiarize with the terms and concepts we use, refer to Bot Concepts.

Build your Bot

Once you get access to the Kore.ai Bot Builder Platform, you can build your first bot within no time by following the below-mentioned steps. Each step is elaborated in detail in this document.

Let’s look at each of the above-mentioned steps in detail.

Define and Build

This step consists of two sub-tasks:

  • Define or Design the Bot
  • Build or Develop the Bot
Define or Design the Bot

Every bot must be built to solve a well-defined use case. The first step to create a well-defined use case involves gathering market requirements and assessing internal needs. Typically, you want to include all relevant business sponsors, product owners, business analysts, and bot developers in this process.

Get a good idea of what the Bot needs to do. A clear description of each step and a flow chart of the various conversation flows will go a long way in easing the process of building the Bot.

For more information, refer to Design.

Build or Develop the Bot

Once your Bot’s capabilities and ideal use case are well-defined, the Bot developer begins the process of configuring bot tasks, defining intents, entities, and build the conversational dialog.

Bot capabilities and dialogs should flow naturally from the specifications you defined in the previous step. It is always valuable to take time to review the list of tasks you want the bot to perform. Ensure that it delivers on the benefits you want the bot to provide and the pain points you want it to solve, before starting actual development. This will certainly save your time in the long run.

Select Bot Type

Based on the requirements, select the type of Bot you want to create. You can create either a

  • Standard Bot – the most common type of Bot with various tasks mapped to a conversation flow.
  • Universal Bot – to link multiple standard Bots.
  • Smart Bot – for common functionality that can be inherited by various verticals within your enterprise.

More on Bot Types.

Create Bot Tasks

Define one or more tasks for the bot. Tasks refer to different types of simple and complex jobs that a developer designates the chatbot to perform to fulfill the user intents.

The combination of various tasks enables you to map the entire conversation flow that you have designed in the previous step.

For example, the most common task types that a travel bot can perform are book tickets, find hotels, and provide weather forecasts, each catering to different user intents.

For more information, refer to Defining Bot Tasks.

Train your Bot for NLP

The best bots are well trained using an iterative process. After you develop your tasks and conversation flow, you can train your bots. Doing so allows your bots to better understand user utterances and the engine to better prioritize one Bot task or intent over another based on the user input.

Bot developers and business analysts work together to provide sample utterances and patterns that are used to complete the initial training. It can be further augmented by internal testing and field data once you deploy the bot.

The following tools help train your Bot so that the NLP engine recognizes and responds to user inputs efficiently and accurately.

  • Train the bot using Machine Learning to improve utterance recognition.
  • You can fine-tune the FM Engine and the bot’s configuration by adding additional utterances, synonyms, and patterns for a task or intents.
  • Enhance your Bot Intelligence by defining interruption handling, multi-intent detection, and more.

For more information, refer to Optimizing Bots for Natural Language Processing.

Channel Enablement

This step refers to adding channels to your Bot that end users can use to access and interact with your Bot after it is published. End users can only interact with your bots, and by extension bot tasks, after Bots are published and deployed to enabled channels.

Channels refer to various communication platforms where a bot can live such as SMS, email, mobile apps, websites, messaging apps, and more. With the Bot Builder, you can design chatbot tasks once and deploy across 20+ channels by merely selecting a checkbox.

For more information, refer to Adding Channels to your Bot.

Test your Bot

After you have built and trained your bot, the most important question that arises is how good is your bot’s NLP model? This is what testing is all about. You must consider testing your bot across all planned messaging channels for a better end-user experience.

You need to carefully test and analyze your ML and NLP models and ensure you have not inadvertently trained your models using a large number of conflicting utterances while paying close attention to false positives and false negatives.

Testing helps determine whether or not more training is needed before deploying your bot. After every round of training or retraining, you must review the training model to determine that the changes made are appropriate and to determine whether they have enhanced or deteriorated the NLP model.

Talk to Bot option, Utterance Testing, and Batch Testing helps in testing and improving the performance of the Bot.

For more information, refer to Test your Bot.

Publish

Once your bot is built and sufficiently tested, it is time to deploy it on the environment of your choice and the communication channels where users engage.

It is recommended that you work with the key business stakeholders to review and approve all bots and bot functionality before moving forward with the deployment.

Publish your bot tasks to your account, a Kore.ai space, or your company account. When you publish tasks, it initiates a publishing request to Bots Admin who can review and approve/disapprove their deployment. Once your bot is approved by all relevant parties, you can deploy to end-users through previously enabled channels.

For more information, refer to Publishing Tasks.

Analyze

Once your bot is deployed, it is important that you continually monitor how users use it and take an active role in managing and refining it using an iterative process. Your bots performance should be monitored from an engagement, performance, and functional standpoint and the results analyzed, including monitoring conversations and other variables like messages per session, retention, location, user demographics, sentiment, and more.

Furthermore, bot developers and analysts work together to identify drop-off points, uncover task or language failures, determine why conversations are abandoned and monitor service and script performance to improve the NLP and functional performance of your bots.

The data collected must be used to improve the NLP and functional performance of your bots. For example, take a look at all the utterances that your bot was not able to map to a bot intent or FAQ and retrain the bot to identify it in the future. For task failures, you can troubleshoot where the process went wrong and come up with solutions.

Building great bots is not easy, but the right platform, a little bit of structure, and a willingness to test and iterate some more goes a long way in achieving bot success.

For more information, refer to Analyze your Bot.

Menu