はじめに
対話型AIプラットフォーム
チャットボットの概要
自然言語処理(NLP)
ボットの概念と用語
クイックスタートガイド
プラットフォームへのアクセス
ボットビルダーの操作
リリースノート
最新バージョン(英語)
以前のバージョン(英語)
廃止機能(英語)
コンセプト
設計
ストーリーボード
ダイアログタスク
ダイアログタスクとは
ダイアログビルダー
ノードタイプ
インテントノード
ダイアログノード
エンティティノード
フォームノード
確認ノード
ロジックノード
ボットアクションノード
サービスノード
Webhookノード
スクリプトノード
グループノード
エージェント転送ノード
ユーザープロンプト
音声通話プロパティ
イベント ハンドラー
ナレッジグラフ
ナレッジグラフの抽出
ナレッジグラフの構築
ボットにナレッジグラフを追加
グラフの作成
ナレッジグラフの構築
既存のソースからFAQを構築
通知タスク
スモールトーク
デジタルスキル
デジタルフォーム
デジタルビュー
デジタルビューとは
パネル
ウィジェット
トレーニング
トレーニングとは
機械学習
機械学習とは
モデル検証
ファンダメンタルミーニング
ナレッジグラフ
示唆
ランキングおよび解決
NLPの詳細設定
NLPのガイドライン
インテリジェンス
インテリジェンスとは
コンテキスト
コンテキストインテント
割り込み
複数インテントの検出
エンティティの変更
デフォルトの会話
センチメント管理
トーン分析
テストとデバッグ
ボットと会話
発話テスト
バッチテスト
会話テスト
デプロイ
チャネル
公開
分析
ボットの分析
NLPメトリクス
会話フロー
Usage Metrics
封じ込め測定
カスタムダッシュボード
カスタムダッシュボードとは
メタタグ
カスタムダッシュボードとウィジェット
LLM and Generative AI
Introduction
LLM Integration
Kore.ai XO GPT Module
Prompts & Requests Library
Co-Pilot Features
Dynamic Conversations Features
Guardrails
ユニバーサルボット
ユニバーサルボットとは
ユニバーサルボットの定義
ユニバーサルボットの作成
ユニバーサルボットのトレーニング
ユニバーサルボットのカスタマイズ
他言語の有効化
ストア
プラントと使用
Overview
Usage Plans
Support Plans
Invoices
管理
ボット認証
複数言語対応ボット
個人を特定できる情報の編集
ボット変数の使用
IVRのシステム連携
一般設定
ボット管理
ハウツー
会話スキルの設計
バンキングボットを作成
バンキングボット – 資金の振り替え
バンキングボット – 残高を更新
ナレッジグラフを構築
スマートアラートの予約方法
Integrations
Actions
Actions Overview
Asana
Configure
Templates
Azure OpenAI
Configure
Templates
BambooHR
Configure
Templates
Bitly
Configure
Templates
Confluence
Configure
Templates
DHL
Configure
Templates
Freshdesk
Configure
Templates
Freshservice
Configure
Templates
Google Maps
Configure
Templates
Here
Configure
Templates
HubSpot
Configure
Templates
JIRA
Configure
Templates
Microsoft Graph
Configure
Templates
Open AI
Configure
Templates
Salesforce
Configure
Templates
ServiceNow
Configure
Templates
Stripe
Configure
Templates
Shopify
Configure
Templates
Twilio
Configure
Templates
Zendesk
Configure
Templates
Agents
Agent Transfer Overview
Custom (BotKit)
Drift
Genesys
Intercom
NiceInContact
NiceInContact(User Hub)
Salesforce
ServiceNow
Configure Tokyo and Lower versions
Configure Utah and Higher versions
Unblu
External NLU Adapters
Overview
Dialogflow Engine
Test and Debug
デジタルスキルの設計
デジタルフォームの設定方法
デジタルビューの設定方法
データテーブルのデータの追加方法
データテーブルのデータの更新方法
Add Data from Digital Forms
ボットのトレーニング
示唆の使用方法
インテントとエンティティのパターンの使用方法
コンテキスト切り替えの管理方法
ボットのデプロイ
エージェント転送の設定方法
ボット関数の使用方法
コンテンツ変数の使用方法
グローバル変数の使用方法
ボットの分析
カスタムダッシュボードの作成方法
カスタムタグを使ってフィルタリング
Data
Overview
Guidelines
Data Table
Table Views
App Definitions
Data as Service
Build a Travel Planning Assistant
Travel Assistant Overview
Create a Travel Virtual Assistant
Design Conversation Skills
Create an ‘Update Booking’ Task
Create a Change Flight Task
Build a Knowledge Graph
Schedule a Smart Alert
Design Digital Skills
Configure Digital Forms
Configure Digital Views
Train the Assistant
Use Traits
Use Patterns
Manage Context Switching
Deploy the Assistant
Use Bot Functions
Use Content Variables
Use Global Variables
Use Web SDK
Build a Banking Assistant
APIs & SDKs
API Reference
API Introduction
Rate Limits
API List
koreUtil Libraries
SDK Reference
SDK Introduction
Web SDK
How the Web SDK Works
SDK Security
SDK Registration
Web Socket Connect and RTM
Tutorials
Widget SDK Tutorial
Web SDK Tutorial
BotKit SDK
BotKit SDK Deployment Guide
Installing the BotKit SDK
Using the BotKit SDK
SDK Events
SDK Functions
Installing Botkit in AWS
Tutorials
BotKit - Blue Prism
BotKit - Flight Search Sample VA
BotKit - Agent Transfer

ADMINISTRATION
Intro to Bots Admin Console
Administration Dashboard
User Management
Managing Your Users
Managing Your Groups
Role Management
Manage Data Tables and Views
Bot Management
Enrollment
Inviting Users
Sending Bulk Invites to Enroll Users
Importing Users and User Data
Synchronizing Users from Active Directory
Security & Compliance
Using Single Sign-On
Two-Factor Authentication for Platform Access
Security Settings
Cloud Connector
Analytics for Bots Admin
Billing
  1. ホーム
  2. Docs
  3. Virtual Assistants
  4. Advanced Topics
  5. Language Management
  6. Managing Translation Services

Managing Translation Services

The Kore.ai XO Platform offers multiple ways to train your virtual assistant for language understanding. One of the ways is to use translation services to translate the user input. In this approach, you can train the virtual assistant in a language (NLU Language) other than the interaction language. For example, you can enable Spanish as an interaction language but train the assistant using English language training data.

Translation services can also be used for translating the bot responses if they are defined in a language other than the conversation language. The Platform allows you to define language-specific responses for each of the languages enabled for the assistant. However, you may choose to write responses in a language other than the enabled language.

The Platform provides out-of-the-box support for Microsoft Translator and Google Translation APIs. You can also use the Custom Translation Engine feature to integrate with any other translation services or your in-house translation services.

Configuring Microsoft Translator Service

To enable automatic translation using Microsoft Translation Services, please follow the steps below:

  1. Go to Build > Configurations > Languages > Translation Configurations.
  2. Select Microsoft Translator.
  3. Provide the API Key of your Microsoft Translator API service. Learn More.
  4. Click Save to complete the setup.

Configuring Google Translation Service

To enable automatic translation using Google Translation Services, please follow the steps below: 

  1. Go to Build > Configurations > Languages > Translation Configurations.
  2. Select Google Translator.
  3. Provide the API Key (Eg: AIzaXXXXXXXXXXXXXXXXXXXEpeW4xa0) of your Google Translation API service in the Access Key field. Learn More.
    • Note that the Platform does not validate the key. It is highly recommended that the key is validated beforehand and is active and working. A tool like Postman can be used to validate the key.

    • You can also save the translator key in an environment / content variable and provide that variable name enclosed in double curly braces while setting up the configuration.

  4. Click Save to complete the setup.

To know how to use the service, please visit KoreUtil Libraries – autoTranslate.

Configuring Custom Translation Service

The Custom Translation Service allows you to use translation services by integrating with other translation providers or to integrate with any in-house translation services you may have.

How it works

Here is how custom translation services work:

  1. Follow the instructions below to enable the Custom Translation Engine feature.
  2. You can set up the integration with your translation service APIs using the Get or Post method.
  3. Refer to your translation service documentation for the authentication mechanism, request payload, and response payload.
  4. This integration is used for translating both the user input as well as the bot responses. The platform will automatically make the following information available in the context during runtime.
  5. It will make use of the following functions while defining the request payload.
    1. koreUtil.conversation.sourceText()– This function will return the text to be translated.
      1. If the user’s input is being translated, then the function will return the user’s input.
      2. If the bot response is being translated, then the function will return the bot response.
    2. For translating user input, this function will return the user input. For translating the bot response, the function will return the bot response text.
    3. koreUtil.conversation.getSourceLanguage() – This function returns the current language of the text to be translated.
      1. If the user input is being translated, then the function will return the language in which the user is interacting.
      2. If the bot response is being translated, then the function will return the language in which the response is written.
    4. koreUtil.conversation.getTargetLanguage() – This function returns the language to which the text should be translated to.
      1. If the user input is being translated, then the function will return the language to which the input should be translated.
      2. If the bot response is being translated, then the function will return the language to which the response should be translated.The platform invokes the translation service using the defined configurations.
  6. The translation engine should share the translated text as part of the API response.
  7. Map the relevant field from the response payload to be used as the translated text.

Enabling a Custom Translation Engine

  1. Go to Build > Configurations > Languages > Translation Configurations.
  2. Select Custom, and choose Add Custom Engine from the dropdown.

  3. Provide a name for the Custom Translation Engine.
  4. Define the request payload for sending the text to be translated. Refer to the details provided above for defining the request payload.
  5. Refer to the Service Node documentation to learn more about how to configure service integrations.

  6. After defining the request payload, you can test the integration by providing the required details from the Test Request tab. Provide the sample values for the variables shown under the Sample Context Values sections, click Test to verify if the custom translation connection is established.

  7. After a successful test, the platform displays the API response received from the translation service.
  8. Verify the response payload and map the translated text from the payload in the Translated Output field.

  9. Click the Extract button to verify if the translation output is correctly mapped.

  10. Click Save & Exit to return to the Languages page.
  11. Click Save to complete the configuration.

Managing Translation Services

The Kore.ai XO Platform offers multiple ways to train your virtual assistant for language understanding. One of the ways is to use translation services to translate the user input. In this approach, you can train the virtual assistant in a language (NLU Language) other than the interaction language. For example, you can enable Spanish as an interaction language but train the assistant using English language training data.

Translation services can also be used for translating the bot responses if they are defined in a language other than the conversation language. The Platform allows you to define language-specific responses for each of the languages enabled for the assistant. However, you may choose to write responses in a language other than the enabled language.

The Platform provides out-of-the-box support for Microsoft Translator and Google Translation APIs. You can also use the Custom Translation Engine feature to integrate with any other translation services or your in-house translation services.

Configuring Microsoft Translator Service

To enable automatic translation using Microsoft Translation Services, please follow the steps below:

  1. Go to Build > Configurations > Languages > Translation Configurations.
  2. Select Microsoft Translator.
  3. Provide the API Key of your Microsoft Translator API service. Learn More.
  4. Click Save to complete the setup.

Configuring Google Translation Service

To enable automatic translation using Google Translation Services, please follow the steps below: 

  1. Go to Build > Configurations > Languages > Translation Configurations.
  2. Select Google Translator.
  3. Provide the API Key (Eg: AIzaXXXXXXXXXXXXXXXXXXXEpeW4xa0) of your Google Translation API service in the Access Key field. Learn More.
    • Note that the Platform does not validate the key. It is highly recommended that the key is validated beforehand and is active and working. A tool like Postman can be used to validate the key.

    • You can also save the translator key in an environment / content variable and provide that variable name enclosed in double curly braces while setting up the configuration.

  4. Click Save to complete the setup.

To know how to use the service, please visit KoreUtil Libraries – autoTranslate.

Configuring Custom Translation Service

The Custom Translation Service allows you to use translation services by integrating with other translation providers or to integrate with any in-house translation services you may have.

How it works

Here is how custom translation services work:

  1. Follow the instructions below to enable the Custom Translation Engine feature.
  2. You can set up the integration with your translation service APIs using the Get or Post method.
  3. Refer to your translation service documentation for the authentication mechanism, request payload, and response payload.
  4. This integration is used for translating both the user input as well as the bot responses. The platform will automatically make the following information available in the context during runtime.
  5. It will make use of the following functions while defining the request payload.
    1. koreUtil.conversation.sourceText()– This function will return the text to be translated.
      1. If the user’s input is being translated, then the function will return the user’s input.
      2. If the bot response is being translated, then the function will return the bot response.
    2. For translating user input, this function will return the user input. For translating the bot response, the function will return the bot response text.
    3. koreUtil.conversation.getSourceLanguage() – This function returns the current language of the text to be translated.
      1. If the user input is being translated, then the function will return the language in which the user is interacting.
      2. If the bot response is being translated, then the function will return the language in which the response is written.
    4. koreUtil.conversation.getTargetLanguage() – This function returns the language to which the text should be translated to.
      1. If the user input is being translated, then the function will return the language to which the input should be translated.
      2. If the bot response is being translated, then the function will return the language to which the response should be translated.The platform invokes the translation service using the defined configurations.
  6. The translation engine should share the translated text as part of the API response.
  7. Map the relevant field from the response payload to be used as the translated text.

Enabling a Custom Translation Engine

  1. Go to Build > Configurations > Languages > Translation Configurations.
  2. Select Custom, and choose Add Custom Engine from the dropdown.

  3. Provide a name for the Custom Translation Engine.
  4. Define the request payload for sending the text to be translated. Refer to the details provided above for defining the request payload.
  5. Refer to the Service Node documentation to learn more about how to configure service integrations.

  6. After defining the request payload, you can test the integration by providing the required details from the Test Request tab. Provide the sample values for the variables shown under the Sample Context Values sections, click Test to verify if the custom translation connection is established.

  7. After a successful test, the platform displays the API response received from the translation service.
  8. Verify the response payload and map the translated text from the payload in the Translated Output field.

  9. Click the Extract button to verify if the translation output is correctly mapped.

  10. Click Save & Exit to return to the Languages page.
  11. Click Save to complete the configuration.
メニュー