はじめに
対話型AIプラットフォーム
チャットボットの概要
自然言語処理(NLP)
ボットの概念と用語
クイックスタートガイド
プラットフォームへのアクセス
ボットビルダーの操作
リリースノート
最新バージョン(英語)
以前のバージョン(英語)
廃止機能(英語)
コンセプト
設計
ストーリーボード
ダイアログタスク
ダイアログタスクとは
ダイアログビルダー
ノードタイプ
インテントノード
ダイアログノード
エンティティノード
フォームノード
確認ノード
ロジックノード
ボットアクションノード
サービスノード
Webhookノード
スクリプトノード
グループノード
エージェント転送ノード
ユーザープロンプト
音声通話プロパティ
イベント ハンドラー
ナレッジグラフ
ナレッジグラフの抽出
ナレッジグラフの構築
ボットにナレッジグラフを追加
グラフの作成
ナレッジグラフの構築
既存のソースからFAQを構築
通知タスク
スモールトーク
デジタルスキル
デジタルフォーム
デジタルビュー
デジタルビューとは
パネル
ウィジェット
トレーニング
トレーニングとは
機械学習
機械学習とは
モデル検証
ファンダメンタルミーニング
ナレッジグラフ
示唆
ランキングおよび解決
NLPの詳細設定
NLPのガイドライン
インテリジェンス
インテリジェンスとは
コンテキスト
コンテキストインテント
割り込み
複数インテントの検出
エンティティの変更
デフォルトの会話
センチメント管理
トーン分析
テストとデバッグ
ボットと会話
発話テスト
バッチテスト
会話テスト
デプロイ
チャネル
公開
分析
ボットの分析
NLPメトリクス
会話フロー
Usage Metrics
封じ込め測定
カスタムダッシュボード
カスタムダッシュボードとは
メタタグ
カスタムダッシュボードとウィジェット
LLM and Generative AI
Introduction
LLM Integration
Kore.ai XO GPT Module
Prompts & Requests Library
Co-Pilot Features
Dynamic Conversations Features
Guardrails
ユニバーサルボット
ユニバーサルボットとは
ユニバーサルボットの定義
ユニバーサルボットの作成
ユニバーサルボットのトレーニング
ユニバーサルボットのカスタマイズ
他言語の有効化
ストア
プラントと使用
Overview
Usage Plans
Support Plans
Invoices
管理
ボット認証
複数言語対応ボット
個人を特定できる情報の編集
ボット変数の使用
IVRのシステム連携
一般設定
ボット管理
ハウツー
会話スキルの設計
バンキングボットを作成
バンキングボット – 資金の振り替え
バンキングボット – 残高を更新
ナレッジグラフを構築
スマートアラートの予約方法
Integrations
Actions
Actions Overview
Asana
Configure
Templates
Azure OpenAI
Configure
Templates
BambooHR
Configure
Templates
Bitly
Configure
Templates
Confluence
Configure
Templates
DHL
Configure
Templates
Freshdesk
Configure
Templates
Freshservice
Configure
Templates
Google Maps
Configure
Templates
Here
Configure
Templates
HubSpot
Configure
Templates
JIRA
Configure
Templates
Microsoft Graph
Configure
Templates
Open AI
Configure
Templates
Salesforce
Configure
Templates
ServiceNow
Configure
Templates
Stripe
Configure
Templates
Shopify
Configure
Templates
Twilio
Configure
Templates
Zendesk
Configure
Templates
Agents
Agent Transfer Overview
Custom (BotKit)
Drift
Genesys
Intercom
NiceInContact
NiceInContact(User Hub)
Salesforce
ServiceNow
Configure Tokyo and Lower versions
Configure Utah and Higher versions
Unblu
External NLU Adapters
Overview
Dialogflow Engine
Test and Debug
デジタルスキルの設計
デジタルフォームの設定方法
デジタルビューの設定方法
データテーブルのデータの追加方法
データテーブルのデータの更新方法
Add Data from Digital Forms
ボットのトレーニング
示唆の使用方法
インテントとエンティティのパターンの使用方法
コンテキスト切り替えの管理方法
ボットのデプロイ
エージェント転送の設定方法
ボット関数の使用方法
コンテンツ変数の使用方法
グローバル変数の使用方法
ボットの分析
カスタムダッシュボードの作成方法
カスタムタグを使ってフィルタリング
Data
Overview
Guidelines
Data Table
Table Views
App Definitions
Data as Service
Build a Travel Planning Assistant
Travel Assistant Overview
Create a Travel Virtual Assistant
Design Conversation Skills
Create an ‘Update Booking’ Task
Create a Change Flight Task
Build a Knowledge Graph
Schedule a Smart Alert
Design Digital Skills
Configure Digital Forms
Configure Digital Views
Train the Assistant
Use Traits
Use Patterns
Manage Context Switching
Deploy the Assistant
Use Bot Functions
Use Content Variables
Use Global Variables
Use Web SDK
Build a Banking Assistant
APIs & SDKs
API Reference
API Introduction
Rate Limits
API List
koreUtil Libraries
SDK Reference
SDK Introduction
Web SDK
How the Web SDK Works
SDK Security
SDK Registration
Web Socket Connect and RTM
Tutorials
Widget SDK Tutorial
Web SDK Tutorial
BotKit SDK
BotKit SDK Deployment Guide
Installing the BotKit SDK
Using the BotKit SDK
SDK Events
SDK Functions
Installing Botkit in AWS
Tutorials
BotKit - Blue Prism
BotKit - Flight Search Sample VA
BotKit - Agent Transfer

ADMINISTRATION
Intro to Bots Admin Console
Administration Dashboard
User Management
Managing Your Users
Managing Your Groups
Role Management
Manage Data Tables and Views
Bot Management
Enrollment
Inviting Users
Sending Bulk Invites to Enroll Users
Importing Users and User Data
Synchronizing Users from Active Directory
Security & Compliance
Using Single Sign-On
Two-Factor Authentication for Platform Access
Security Settings
Cloud Connector
Analytics for Bots Admin
Billing
  1. ホーム
  2. Docs
  3. Virtual Assistants
  4. SDKs
  5. Installing Botkit in AWS

Installing Botkit in AWS

Introduction

This guide outlines the steps for installing Kore.ai Experience Optimization Platform BotKit in AWS.

BotKit Overview

BotKit is an SDK that extends the Kore.ai XO platform’s conversational AI capabilities. It allows developers to:

  • Implement custom business logic in XO conversational flows using webhooks.
  • Enhance entity and intent recognition with custom NLU models.
  • Integrate with unsupported messaging or voice-based channels.
  • Handle additional conversation events for complex workflows.

BotKit complements XO’s no-code bot builder by enabling programmatic customization for enterprise requirements.

Example Use Cases

  • Channel integrations: Integrate with new conversational channels not natively supported by the platform, such as custom mobile SDKs or IoT devices.
  • Custom NLU Models: Employ external NLP models tuned to proprietary enterprise data for specialized intent recognition and entity extraction. BotKit enables the injection of custom models that are not available on the platform.
  • Conversation Lifecycle Handlers: Add custom logic triggered on conversation events like start, close, user input, etc., for additional processing like state notifications, metrics tracking, etc. This is useful for complex workflows.
  • Non-Standard Integrations: Connect to external services that don’t directly conform to the API node spec, such as calling custom APIs, on-premise systems, etc. BotKit allows for webhooks to custom integration code. For example, external biometrics inject voice/face verification from third-party systems before providing privileged information. Confirm identity via voice match before sharing account balance.
  • Custom Analytics: Capture enterprise KPIs that are not available out-of-the-box, like lead quality customer lifetime value, and store them in a third-party analytics platform. For example, Track key metrics across all conversational touchpoints and send them to Google Analytics.

References:

Botkit Installation Steps in AWS

Follow these steps for an automated BotKit deployment in AWS:

Step 1. Create a Golden Image

  1. Launch a new server with the base OS with the below configurations (Amazon Linux 2 or the certified Base OS such as CentOS / RedHat 7.x or above:
    • 4vCPU
    • 16 GB RAM
    • OS Disk (20 GB)
    • Data Disk (50 GB)
      We suggest the instance type m5.xlarge on AWS, which would satisfy the above requirements.
  2. Update all the OS-level packages using the command “yum update”.
  3. Install NodeJS
  4. Install Nginx’s latest version
  5. Ensure both the package installations are successful with the following commands:
    1. node -v
    2. nginx –version
  6. Create a DeployScript to pull the build from your central repository & extract it to the data disk.
  7. Create the required startup scripts to bring up the services for both Botkit & Nginx.
  8. Configure Nginx to listen on port 80 and add the upstream configuration to route the traffic to the respective bootkit instance.
  9. Create the Golden Image.

Step 2. Set Up Load Balancer

  1. Create an External(Internet-facing) Application Load Balancer (ALB).
  2. Add a listener on port 443 with an SSL certificate (Preferably using ACM).
  3. Create a target group to configure the backend instances on port 80 and assign the same to the listener.

Step 3: Configure DNS

  1. Create an “A/CNAME Record” under your external facing domain & map it to the Load Balancer.

Step 4: Set Up Elasticache (Optional)

  1. If Botkit requires Redis, launch an AWS ElasticCache service for Redis with the respective capacity requirements.

Step 5: Create a Launch Template

  1. Create an AWS Launch template with the Golden image.
  2. Configure the required VPC settings, including the subnets, Security Groups, etc.,
  3. Under the “USER_DATA”, invoke the deployment script to deploy the latest build & start the services.
  4. Set the current version as the default.

Step 6: Configure AutoScaling Group

  1. Create a new AutoScaling Group with the launch template with the default version.
  2. Configure all the other required settings as per your internal policies.
  3. Attach the target group to automatically attach the instance to the Load Balancer.
  4. Enabling the SNS notifications for the launch/termination of the instances is recommended.
  5. Configure autoscaling policies to scale up with the CPU utilization threshold as per your internal policies.

Step 7: Establish Configuration Repository

  1. Maintain a configuration repository for the configurations for Botkit, Nginx, etc.

Step 8: Implement CI/CD Pipeline

  1. Create a CI/CD pipeline using Jenkins or any other automation tools as per your internal policies.
  2. Below are the steps for the deployments:
    1. Checkout of the Botkit codebase to the local workspace.
    2. Check out the configuration files from the configuration repository.
    3. Install the NPM dependencies (Optional).
    4. Create an Archive & push it to the central repository (S3 Bucket / Artifactory, etc.).
    5. Invoke the Deploy Script to deploy the bundle to the target systems in a rolling fashion: Remove one of the servers from the LB, deploy the build, restart the services, and attach it back to the LB. Repeat the same for the other server.
    6. Additionally, you can configure the vulnerability scans in your pipeline before pushing the build to the target systems & add a condition based on the vulnerability report to proceed further.

Optional: Security Patching

  1. Update your Golden image with the respective patches.
  2. Validate the application by launching a standalone server.
  3. Upon successful validation, launch new servers using the AutoScaling Group & terminate the old servers.

Installing Botkit in AWS

Introduction

This guide outlines the steps for installing Kore.ai Experience Optimization Platform BotKit in AWS.

BotKit Overview

BotKit is an SDK that extends the Kore.ai XO platform’s conversational AI capabilities. It allows developers to:

  • Implement custom business logic in XO conversational flows using webhooks.
  • Enhance entity and intent recognition with custom NLU models.
  • Integrate with unsupported messaging or voice-based channels.
  • Handle additional conversation events for complex workflows.

BotKit complements XO’s no-code bot builder by enabling programmatic customization for enterprise requirements.

Example Use Cases

  • Channel integrations: Integrate with new conversational channels not natively supported by the platform, such as custom mobile SDKs or IoT devices.
  • Custom NLU Models: Employ external NLP models tuned to proprietary enterprise data for specialized intent recognition and entity extraction. BotKit enables the injection of custom models that are not available on the platform.
  • Conversation Lifecycle Handlers: Add custom logic triggered on conversation events like start, close, user input, etc., for additional processing like state notifications, metrics tracking, etc. This is useful for complex workflows.
  • Non-Standard Integrations: Connect to external services that don’t directly conform to the API node spec, such as calling custom APIs, on-premise systems, etc. BotKit allows for webhooks to custom integration code. For example, external biometrics inject voice/face verification from third-party systems before providing privileged information. Confirm identity via voice match before sharing account balance.
  • Custom Analytics: Capture enterprise KPIs that are not available out-of-the-box, like lead quality customer lifetime value, and store them in a third-party analytics platform. For example, Track key metrics across all conversational touchpoints and send them to Google Analytics.

References:

Botkit Installation Steps in AWS

Follow these steps for an automated BotKit deployment in AWS:

Step 1. Create a Golden Image

  1. Launch a new server with the base OS with the below configurations (Amazon Linux 2 or the certified Base OS such as CentOS / RedHat 7.x or above:
    • 4vCPU
    • 16 GB RAM
    • OS Disk (20 GB)
    • Data Disk (50 GB)
      We suggest the instance type m5.xlarge on AWS, which would satisfy the above requirements.
  2. Update all the OS-level packages using the command “yum update”.
  3. Install NodeJS
  4. Install Nginx’s latest version
  5. Ensure both the package installations are successful with the following commands:
    1. node -v
    2. nginx –version
  6. Create a DeployScript to pull the build from your central repository & extract it to the data disk.
  7. Create the required startup scripts to bring up the services for both Botkit & Nginx.
  8. Configure Nginx to listen on port 80 and add the upstream configuration to route the traffic to the respective bootkit instance.
  9. Create the Golden Image.

Step 2. Set Up Load Balancer

  1. Create an External(Internet-facing) Application Load Balancer (ALB).
  2. Add a listener on port 443 with an SSL certificate (Preferably using ACM).
  3. Create a target group to configure the backend instances on port 80 and assign the same to the listener.

Step 3: Configure DNS

  1. Create an “A/CNAME Record” under your external facing domain & map it to the Load Balancer.

Step 4: Set Up Elasticache (Optional)

  1. If Botkit requires Redis, launch an AWS ElasticCache service for Redis with the respective capacity requirements.

Step 5: Create a Launch Template

  1. Create an AWS Launch template with the Golden image.
  2. Configure the required VPC settings, including the subnets, Security Groups, etc.,
  3. Under the “USER_DATA”, invoke the deployment script to deploy the latest build & start the services.
  4. Set the current version as the default.

Step 6: Configure AutoScaling Group

  1. Create a new AutoScaling Group with the launch template with the default version.
  2. Configure all the other required settings as per your internal policies.
  3. Attach the target group to automatically attach the instance to the Load Balancer.
  4. Enabling the SNS notifications for the launch/termination of the instances is recommended.
  5. Configure autoscaling policies to scale up with the CPU utilization threshold as per your internal policies.

Step 7: Establish Configuration Repository

  1. Maintain a configuration repository for the configurations for Botkit, Nginx, etc.

Step 8: Implement CI/CD Pipeline

  1. Create a CI/CD pipeline using Jenkins or any other automation tools as per your internal policies.
  2. Below are the steps for the deployments:
    1. Checkout of the Botkit codebase to the local workspace.
    2. Check out the configuration files from the configuration repository.
    3. Install the NPM dependencies (Optional).
    4. Create an Archive & push it to the central repository (S3 Bucket / Artifactory, etc.).
    5. Invoke the Deploy Script to deploy the bundle to the target systems in a rolling fashion: Remove one of the servers from the LB, deploy the build, restart the services, and attach it back to the LB. Repeat the same for the other server.
    6. Additionally, you can configure the vulnerability scans in your pipeline before pushing the build to the target systems & add a condition based on the vulnerability report to proceed further.

Optional: Security Patching

  1. Update your Golden image with the respective patches.
  2. Validate the application by launching a standalone server.
  3. Upon successful validation, launch new servers using the AutoScaling Group & terminate the old servers.
メニュー