はじめに
対話型AIプラットフォーム
チャットボットの概要
自然言語処理(NLP)
ボットの概念と用語
クイックスタートガイド
プラットフォームへのアクセス
ボットビルダーの操作
リリースノート
最新バージョン(英語)
以前のバージョン(英語)
廃止機能(英語)
コンセプト
設計
ストーリーボード
ダイアログタスク
ダイアログタスクとは
ダイアログビルダー
ノードタイプ
インテントノード
ダイアログノード
エンティティノード
フォームノード
確認ノード
ロジックノード
ボットアクションノード
サービスノード
Webhookノード
スクリプトノード
グループノード
エージェント転送ノード
ユーザープロンプト
音声通話プロパティ
イベント ハンドラー
ナレッジグラフ
ナレッジグラフの抽出
ナレッジグラフの構築
ボットにナレッジグラフを追加
グラフの作成
ナレッジグラフの構築
既存のソースからFAQを構築
通知タスク
スモールトーク
デジタルスキル
デジタルフォーム
デジタルビュー
デジタルビューとは
パネル
ウィジェット
トレーニング
トレーニングとは
機械学習
機械学習とは
モデル検証
ファンダメンタルミーニング
ナレッジグラフ
示唆
ランキングおよび解決
NLPの詳細設定
NLPのガイドライン
インテリジェンス
インテリジェンスとは
コンテキスト
コンテキストインテント
割り込み
複数インテントの検出
エンティティの変更
デフォルトの会話
センチメント管理
トーン分析
テストとデバッグ
ボットと会話
発話テスト
バッチテスト
会話テスト
デプロイ
チャネル
公開
分析
ボットの分析
NLPメトリクス
会話フロー
Usage Metrics
封じ込め測定
カスタムダッシュボード
カスタムダッシュボードとは
メタタグ
カスタムダッシュボードとウィジェット
LLM and Generative AI
Introduction
LLM Integration
Kore.ai XO GPT Module
Prompts & Requests Library
Co-Pilot Features
Dynamic Conversations Features
Guardrails
ユニバーサルボット
ユニバーサルボットとは
ユニバーサルボットの定義
ユニバーサルボットの作成
ユニバーサルボットのトレーニング
ユニバーサルボットのカスタマイズ
他言語の有効化
ストア
プラントと使用
Overview
Usage Plans
Support Plans
Invoices
管理
ボット認証
複数言語対応ボット
個人を特定できる情報の編集
ボット変数の使用
IVRのシステム連携
一般設定
ボット管理
ハウツー
会話スキルの設計
バンキングボットを作成
バンキングボット – 資金の振り替え
バンキングボット – 残高を更新
ナレッジグラフを構築
スマートアラートの予約方法
Integrations
Actions
Actions Overview
Asana
Configure
Templates
Azure OpenAI
Configure
Templates
BambooHR
Configure
Templates
Bitly
Configure
Templates
Confluence
Configure
Templates
DHL
Configure
Templates
Freshdesk
Configure
Templates
Freshservice
Configure
Templates
Google Maps
Configure
Templates
Here
Configure
Templates
HubSpot
Configure
Templates
JIRA
Configure
Templates
Microsoft Graph
Configure
Templates
Open AI
Configure
Templates
Salesforce
Configure
Templates
ServiceNow
Configure
Templates
Stripe
Configure
Templates
Shopify
Configure
Templates
Twilio
Configure
Templates
Zendesk
Configure
Templates
Agents
Agent Transfer Overview
Custom (BotKit)
Drift
Genesys
Intercom
NiceInContact
NiceInContact(User Hub)
Salesforce
ServiceNow
Configure Tokyo and Lower versions
Configure Utah and Higher versions
Unblu
External NLU Adapters
Overview
Dialogflow Engine
Test and Debug
デジタルスキルの設計
デジタルフォームの設定方法
デジタルビューの設定方法
データテーブルのデータの追加方法
データテーブルのデータの更新方法
Add Data from Digital Forms
ボットのトレーニング
示唆の使用方法
インテントとエンティティのパターンの使用方法
コンテキスト切り替えの管理方法
ボットのデプロイ
エージェント転送の設定方法
ボット関数の使用方法
コンテンツ変数の使用方法
グローバル変数の使用方法
ボットの分析
カスタムダッシュボードの作成方法
カスタムタグを使ってフィルタリング
Data
Overview
Guidelines
Data Table
Table Views
App Definitions
Data as Service
Build a Travel Planning Assistant
Travel Assistant Overview
Create a Travel Virtual Assistant
Design Conversation Skills
Create an ‘Update Booking’ Task
Create a Change Flight Task
Build a Knowledge Graph
Schedule a Smart Alert
Design Digital Skills
Configure Digital Forms
Configure Digital Views
Train the Assistant
Use Traits
Use Patterns
Manage Context Switching
Deploy the Assistant
Use Bot Functions
Use Content Variables
Use Global Variables
Use Web SDK
Build a Banking Assistant
APIs & SDKs
API Reference
API Introduction
Rate Limits
API List
koreUtil Libraries
SDK Reference
SDK Introduction
Web SDK
How the Web SDK Works
SDK Security
SDK Registration
Web Socket Connect and RTM
Tutorials
Widget SDK Tutorial
Web SDK Tutorial
BotKit SDK
BotKit SDK Deployment Guide
Installing the BotKit SDK
Using the BotKit SDK
SDK Events
SDK Functions
Installing Botkit in AWS
Tutorials
BotKit - Blue Prism
BotKit - Flight Search Sample VA
BotKit - Agent Transfer

ADMINISTRATION
Intro to Bots Admin Console
Administration Dashboard
User Management
Managing Your Users
Managing Your Groups
Role Management
Manage Data Tables and Views
Bot Management
Enrollment
Inviting Users
Sending Bulk Invites to Enroll Users
Importing Users and User Data
Synchronizing Users from Active Directory
Security & Compliance
Using Single Sign-On
Two-Factor Authentication for Platform Access
Security Settings
Cloud Connector
Analytics for Bots Admin
Billing
  1. ホーム
  2. Docs
  3. Virtual Assistants
  4. How Tos
  5. Travel Planing Assistant
  6. Travel VA: Using Traits

Travel VA: Using Traits

In this How-To, we will explore a scenario in a Travel Planning Assistant, where traits can be used to steer the conversation flow in a more natural and predictable direction. For details on what Traits are and how they are implemented in the Kore.ai XO Platform, please refer here.

Problem Statement

Consider the cases where the user is trying to report an issue or ask a question pertaining to “Make a Booking”. The VA might trigger the “Make a Booking” intent as opposed to “Issue Resolution”. The problem that may arise in this scenario is that the user is presented with a response that is not relevant to their utterance.

In this document, we will show how Traits can be used to identify such situations and take appropriate action.

Prerequisites

To go through these configurations, you need to know at least the basics of building a Virtual Assistant. This is because your assistant needs to have been already built when you begin working on your forms.

In addition, your VA requires the following configurations:

  • Book a Flight Dialog Task – This task allows the user to make a flight booking via the assistant.

  • Issue Resolution Dialog Task – This task assists in any issues faced by the user. It displays a regret message and transfers the conversation to a Live Agent.

  • Knowledge Graph Booking FAQ – A Booking node with an FAQ for How do I make a Booking?

Implementation

Intent Detection using Traits

We will be using Trait to steer the conversation to “Issue Resolution” when the word “issue” is present in the User Utterance.

Steps:

  1. Select Build tab from the top menu
  2. From Natural Language -> Training select the Traits tab.
  3. Click Add New Trait. We will be using a trait to identify the existence of the word ‘issue’ in the user utterance.
    1. Add a Trait Type as Problem Statement, and Traits as issue. A given Trait Type can have multiple Traits grouped together logically.
    2. Optionally you can add utterances for Issues as ‘problem’, ‘unable to’, and ‘not working’. These are the alternate words that users might use to indicate an issue.
    3. Save & Add Rule 
  4. We will be defining the intent that needs to be triggered in the presence of this Issue trait.
    1. Select IntentIssue Resolution to be triggered in the presence of this trait.
    2. Add the Trait Rulesissue as the trait that should trigger the above selected intent.
    3. Save the Trait Mapping
  5. Train the Traits.
  6. Open the Issue Resolution Intent to see the Trait Rules under the NLP properties panel updated with the issue trait.
  7. Talk to the Bot and see the conversation flow. As you can see in the illustration below, rather than detect the Make a Booking intent, the VA uses the Issue Resolution task to transfer the conversation to an agent. This is despite the fact that the user utterance contains the full Make a Booking sentence. The VA picks up on the presence of an utterance which we have set up under the Issue trait – the word problem – and thus triggers the intent that we selected as the rule, rather than the other one. 

Knowledge Intent using Traits

Here we will see how to drive the query from the user to the appropriate FAQ instead of the dialog task.

Steps

  1. From Natural Language > Training open the Traits dialog.
  2. Click Add New Trait. We will be using a trait to identify the existence of questions in the user utterance.
    1. Add a Trait Type as Inquiry, and Traits as ask. A given Trait Type can have multiple Traits grouped together logically.
    2. Optionally you can add utterances for Issues as ‘wondering’,  and ‘want to know’. These are the alternate words that the user might use to indicate an inquiry.
    3. Save & Exit the Trait.
    4. Train the Trait.
  3. Associate the Trait to the FAQ
    1. Open the Knowledge Graph and hover over the node with the question pertaining to Booking.
    2. Click the Settings or gear icon.
    3. Under Traits type and select the ask trait.
    4. Train the Knowledge Graph.
  4. Talk to the bot and say I want to make a booking. You will see that the assistant is still detecting the Make a Booking intent.
  5. To understand the reason behind this:
    1. Open Testing > Utterance Testing.
    2. Type the utterance, you will see that the Trait has been identified.
    3. Select the Ranking and Resolver. You will see that both the intent and FAQ were identified but the intent got a higher score.

  6. To ensure that the intent is not selected, we will add a Negative Pattern to the Book Flight intent.
    1. Go to Build > Conversation Skills > Dialog Tasks and select the Book Flight task.
    2. Select the primary intent node and go to its NLP Properties
    3. Under Patterns click Add Pattern.
    4. Select the Negative Patterns tab. Add the words know, ask, any any other question identifiers.This will ensure that the ‘Book Flight’ intent is not identified when either of the negative patterns is present in the user utterance.

Check the Utterance Training and ensure that the Book Flight intent is rejected because of the negative pattern. Finally, Talk to the Bot and test the changes.

Travel VA: Using Traits

In this How-To, we will explore a scenario in a Travel Planning Assistant, where traits can be used to steer the conversation flow in a more natural and predictable direction. For details on what Traits are and how they are implemented in the Kore.ai XO Platform, please refer here.

Problem Statement

Consider the cases where the user is trying to report an issue or ask a question pertaining to “Make a Booking”. The VA might trigger the “Make a Booking” intent as opposed to “Issue Resolution”. The problem that may arise in this scenario is that the user is presented with a response that is not relevant to their utterance.

In this document, we will show how Traits can be used to identify such situations and take appropriate action.

Prerequisites

To go through these configurations, you need to know at least the basics of building a Virtual Assistant. This is because your assistant needs to have been already built when you begin working on your forms.

In addition, your VA requires the following configurations:

  • Book a Flight Dialog Task – This task allows the user to make a flight booking via the assistant.

  • Issue Resolution Dialog Task – This task assists in any issues faced by the user. It displays a regret message and transfers the conversation to a Live Agent.

  • Knowledge Graph Booking FAQ – A Booking node with an FAQ for How do I make a Booking?

Implementation

Intent Detection using Traits

We will be using Trait to steer the conversation to “Issue Resolution” when the word “issue” is present in the User Utterance.

Steps:

  1. Select Build tab from the top menu
  2. From Natural Language -> Training select the Traits tab.
  3. Click Add New Trait. We will be using a trait to identify the existence of the word ‘issue’ in the user utterance.
    1. Add a Trait Type as Problem Statement, and Traits as issue. A given Trait Type can have multiple Traits grouped together logically.
    2. Optionally you can add utterances for Issues as ‘problem’, ‘unable to’, and ‘not working’. These are the alternate words that users might use to indicate an issue.
    3. Save & Add Rule 
  4. We will be defining the intent that needs to be triggered in the presence of this Issue trait.
    1. Select IntentIssue Resolution to be triggered in the presence of this trait.
    2. Add the Trait Rulesissue as the trait that should trigger the above selected intent.
    3. Save the Trait Mapping
  5. Train the Traits.
  6. Open the Issue Resolution Intent to see the Trait Rules under the NLP properties panel updated with the issue trait.
  7. Talk to the Bot and see the conversation flow. As you can see in the illustration below, rather than detect the Make a Booking intent, the VA uses the Issue Resolution task to transfer the conversation to an agent. This is despite the fact that the user utterance contains the full Make a Booking sentence. The VA picks up on the presence of an utterance which we have set up under the Issue trait – the word problem – and thus triggers the intent that we selected as the rule, rather than the other one. 

Knowledge Intent using Traits

Here we will see how to drive the query from the user to the appropriate FAQ instead of the dialog task.

Steps

  1. From Natural Language > Training open the Traits dialog.
  2. Click Add New Trait. We will be using a trait to identify the existence of questions in the user utterance.
    1. Add a Trait Type as Inquiry, and Traits as ask. A given Trait Type can have multiple Traits grouped together logically.
    2. Optionally you can add utterances for Issues as ‘wondering’,  and ‘want to know’. These are the alternate words that the user might use to indicate an inquiry.
    3. Save & Exit the Trait.
    4. Train the Trait.
  3. Associate the Trait to the FAQ
    1. Open the Knowledge Graph and hover over the node with the question pertaining to Booking.
    2. Click the Settings or gear icon.
    3. Under Traits type and select the ask trait.
    4. Train the Knowledge Graph.
  4. Talk to the bot and say I want to make a booking. You will see that the assistant is still detecting the Make a Booking intent.
  5. To understand the reason behind this:
    1. Open Testing > Utterance Testing.
    2. Type the utterance, you will see that the Trait has been identified.
    3. Select the Ranking and Resolver. You will see that both the intent and FAQ were identified but the intent got a higher score.

  6. To ensure that the intent is not selected, we will add a Negative Pattern to the Book Flight intent.
    1. Go to Build > Conversation Skills > Dialog Tasks and select the Book Flight task.
    2. Select the primary intent node and go to its NLP Properties
    3. Under Patterns click Add Pattern.
    4. Select the Negative Patterns tab. Add the words know, ask, any any other question identifiers.This will ensure that the ‘Book Flight’ intent is not identified when either of the negative patterns is present in the user utterance.

Check the Utterance Training and ensure that the Book Flight intent is rejected because of the negative pattern. Finally, Talk to the Bot and test the changes.

メニュー