はじめに
対話型AIプラットフォーム
チャットボットの概要
自然言語処理(NLP)
ボットの概念と用語
クイックスタートガイド
プラットフォームへのアクセス
ボットビルダーの操作
リリースノート
最新バージョン(英語)
以前のバージョン(英語)
廃止機能(英語)
コンセプト
設計
ストーリーボード
ダイアログタスク
ダイアログタスクとは
ダイアログビルダー
ノードタイプ
インテントノード
ダイアログノード
エンティティノード
フォームノード
確認ノード
ロジックノード
ボットアクションノード
サービスノード
Webhookノード
スクリプトノード
グループノード
エージェント転送ノード
ユーザープロンプト
音声通話プロパティ
イベント ハンドラー
ナレッジグラフ
ナレッジグラフの抽出
ナレッジグラフの構築
ボットにナレッジグラフを追加
グラフの作成
ナレッジグラフの構築
既存のソースからFAQを構築
通知タスク
スモールトーク
デジタルスキル
デジタルフォーム
デジタルビュー
デジタルビューとは
パネル
ウィジェット
トレーニング
トレーニングとは
機械学習
機械学習とは
モデル検証
ファンダメンタルミーニング
ナレッジグラフ
示唆
ランキングおよび解決
NLPの詳細設定
NLPのガイドライン
インテリジェンス
インテリジェンスとは
コンテキスト
コンテキストインテント
割り込み
複数インテントの検出
エンティティの変更
デフォルトの会話
センチメント管理
トーン分析
テストとデバッグ
ボットと会話
発話テスト
バッチテスト
会話テスト
デプロイ
チャネル
公開
分析
ボットの分析
NLPメトリクス
会話フロー
Usage Metrics
封じ込め測定
カスタムダッシュボード
カスタムダッシュボードとは
メタタグ
カスタムダッシュボードとウィジェット
LLM and Generative AI
Introduction
LLM Integration
Kore.ai XO GPT Module
Prompts & Requests Library
Co-Pilot Features
Dynamic Conversations Features
ユニバーサルボット
ユニバーサルボットとは
ユニバーサルボットの定義
ユニバーサルボットの作成
ユニバーサルボットのトレーニング
ユニバーサルボットのカスタマイズ
他言語の有効化
ストア
プラントと使用
Overview
Usage Plans
Support Plans
Invoices
管理
ボット認証
複数言語対応ボット
個人を特定できる情報の編集
ボット変数の使用
IVRのシステム連携
一般設定
ボット管理
ハウツー
会話スキルの設計
バンキングボットを作成
バンキングボット – 資金の振り替え
バンキングボット – 残高を更新
ナレッジグラフを構築
スマートアラートの予約方法
Integrations
Actions
Actions Overview
Asana
Configure
Templates
Azure OpenAI
Configure
Templates
BambooHR
Configure
Templates
Bitly
Configure
Templates
Confluence
Configure
Templates
DHL
Configure
Templates
Freshdesk
Configure
Templates
Freshservice
Configure
Templates
Google Maps
Configure
Templates
Here
Configure
Templates
HubSpot
Configure
Templates
JIRA
Configure
Templates
Microsoft Graph
Configure
Templates
Open AI
Configure
Templates
Salesforce
Configure
Templates
ServiceNow
Configure
Templates
Stripe
Configure
Templates
Shopify
Configure
Templates
Twilio
Configure
Templates
Zendesk
Configure
Templates
Agents
Agent Transfer Overview
Custom (BotKit)
Drift
Genesys
Intercom
NiceInContact
NiceInContact(User Hub)
Salesforce
ServiceNow
Configure Tokyo and Lower versions
Configure Utah and Higher versions
Unblu
External NLU Adapters
Overview
Dialogflow Engine
Test and Debug
デジタルスキルの設計
デジタルフォームの設定方法
デジタルビューの設定方法
データテーブルのデータの追加方法
データテーブルのデータの更新方法
Add Data from Digital Forms
ボットのトレーニング
示唆の使用方法
インテントとエンティティのパターンの使用方法
コンテキスト切り替えの管理方法
ボットのデプロイ
エージェント転送の設定方法
ボット関数の使用方法
コンテンツ変数の使用方法
グローバル変数の使用方法
ボットの分析
カスタムダッシュボードの作成方法
カスタムタグを使ってフィルタリング
Data
Overview
Data Table
Table Views
App Definitions
Data as Service
Build a Travel Planning Assistant
Travel Assistant Overview
Create a Travel Virtual Assistant
Design Conversation Skills
Create an ‘Update Booking’ Task
Create a Change Flight Task
Build a Knowledge Graph
Schedule a Smart Alert
Design Digital Skills
Configure Digital Forms
Configure Digital Views
Train the Assistant
Use Traits
Use Patterns
Manage Context Switching
Deploy the Assistant
Use Bot Functions
Use Content Variables
Use Global Variables
Use Web SDK
Build a Banking Assistant
Migrate External Bots
Google Dialogflow Bot
APIs & SDKs
API Reference
API Introduction
Rate Limits
API List
koreUtil Libraries
SDK Reference
SDK Introduction
Web SDK
How the Web SDK Works
SDK Security
SDK Registration
Web Socket Connect and RTM
Tutorials
Widget SDK Tutorial
Web SDK Tutorial
BotKit SDK
BotKit SDK Deployment Guide
Installing the BotKit SDK
Using the BotKit SDK
SDK Events
SDK Functions
Tutorials
BotKit - Blue Prism
BotKit - Flight Search Sample VA
BotKit - Agent Transfer
  1. ホーム
  2. Integrations
  3. Dialogflow Engine

Dialogflow Engine

The Dialogflow engine is responsible for understanding user inputs and providing relevant responses based on pre-defined intents and entities. It uses natural language processing (NLP) and machine learning algorithms to identify the user’s intent and extract relevant information from their inputs. It also enables developers to build complex conversational flows, manage context, and integrate with external APIs. To use the Dialogflow engine for Natural Language Understanding, you need to create the agent and train the model on Dialogflow if you don’t have one already. The following sections detail the agent creation and training steps and also explain how to obtain the information needed to configure the Dialogflow ES Adapter. Once all the configurations are done, you can start testing the conversation behavior/flow of the bot using your Dialogflow ES model.

Train the Dialogflow Engine

Dialogflow ES NLU is one of the external NLU adapters. If you want to configure the Dialogflow ES adapter, you need the Project ID and private key obtained from the JSON file in the google cloud console. See Enable the Dialogflow API and Create Service Account Credentials to understand how to obtain the Project ID and the Private Key. These sections explain training and usage of the Dialogflow NLU engine.

Prerequisites: You need to have at least one agent created on the Dialogflow Essentials page, to be able to configure the intent, entity nodes, or FAQs.

To enable intent and entity detection using the Dialogflow engine during a user conversation, you need to create the intents and entities on the Dialogflow Essentials cloud page with the same names used during their creation on Kore.ai XO Platform.

The following steps explain how to create an agent, intent and test the configuration.

  1. Go to Dialogflow Essentials and click Create Agent, if you don’t have any available agent. In this example an agent with the name Test_Dialogflow is created.
  2. Click Create Intent to create an intent with the same name as in your VA.
  3. In this example an intent with name Phone Number Verification is created as we have the same user intent in the VA.
  4. Under Action and Parameters, add Action as per the name of the entity. Add the Parameter Name, Entity, Value and the Prompt details.
  5. Under Responses → Default, add the Text Response to be displayed for the user.
  6. Click Save to save the configuration.
  7. Go to Training in the left side menu and enter the intent name at User Says.
  8. Enter the intent name same as it is in the VA, in the top most right corner of the page in Try Now, to test the Dialogflow configuration.
  9. The configured text response would be displayed under the Default Response.
  10. Note: You can configure any intents, entities or FAQ details which you require to be identified using the Dialogflow ES adapter.

Enable the Dialogflow API

You can activate the Dialogflow API feature for your agent within Dialogflow cloud page.
Follow these steps:

  1. Click the Gear icon next to the agent name from the top left of the Dialogflow dashboard.
  2. The General Settings page is displayed. From there scroll down, to note the project ID value.
  3. Note: The Project ID will be used to fill the credentials while enabling the Dialogflow adapter on the Kore.AI platform.
  4. Click on the project ID to open google cloud.
  5. You will navigate to the Google Cloud dashboard.
  6. Select APIs & Services → Enabled APIs & Services from the left resources menu.
  7. Click + Enable APIs and Services from the top of the display and find the Dialogflow API option.

  8. Upon activation of Dialogflow API, select Manage to open the Dialogflow API management dashboard.

Create Service Account Credentials

The next step on the Dialogflow API management dashboard is to create a set of credentials to use the API, and to connect to the Dialogflow cloud from the Kore.ai platform.

Service Account Creation

Follow these steps to create service account:

  1. Click the button Create Credentials at the top of the screen.
  2. Note: If you already have service accounts with credentials, you can access them from the Credentials option in the left navigation menu.

  3. In the Create Credentials page, the Dialogflow API is by default selected in the Select an API drop-down.
  4. Select Application Data option for What data will you be accessing? as you are creating a service account. Click Next.
  5. Select No. I’m not using them and click Next.
  6. In the Service account details page, provide details for service account name, ID and description as shown below.
  7. Click Create and Continue. The service account is created.
  8. Grant access permissions to this service account and also grant users access to this service account if required in the next pages that get displayed.

Private Key Generation

Follow these steps to generate the private key:

  1. Click on the service account created under Service Accounts in the API & Services page as shown below.
  2. The service account details are displayed as shown in the following screenshot. Go to the Keys tab.
  3. Select Create a new key in the Add Key drop-down to generate the private key.
  4. In the displayed pop-up, select JSON as the option to generate the private key.

Note: The JSON option is by default selected.

A file containing the JSON Private Key information for use in the External NLU settings of Kore.ai platform, is downloaded and saved to your computer.

The file has the layout as follows:
{
"type": "***",
"project_id": "***",
"private_key_id": "***",
"private_key": "***",
"client_email": "***",
"client_id": "***",
"auth_uri": "***",
"token_uri": "***",
"auth_provider_x509_cert_url": "***",
"client_x509_cert_url": "***"
}

Note: Save this JSON payload securely. You will not be able to access it again. The entire content of this JSON file must be copied into the private key field inside the Kore.AI External NLU adapter settings. See Adapter Configuration to know more.

To understand the testing and debugging of your VA, to validate the working of the DialogFlow NLU, see Test and Debug.

Dialogflow Engine

The Dialogflow engine is responsible for understanding user inputs and providing relevant responses based on pre-defined intents and entities. It uses natural language processing (NLP) and machine learning algorithms to identify the user’s intent and extract relevant information from their inputs. It also enables developers to build complex conversational flows, manage context, and integrate with external APIs. To use the Dialogflow engine for Natural Language Understanding, you need to create the agent and train the model on Dialogflow if you don’t have one already. The following sections detail the agent creation and training steps and also explain how to obtain the information needed to configure the Dialogflow ES Adapter. Once all the configurations are done, you can start testing the conversation behavior/flow of the bot using your Dialogflow ES model.

Train the Dialogflow Engine

Dialogflow ES NLU is one of the external NLU adapters. If you want to configure the Dialogflow ES adapter, you need the Project ID and private key obtained from the JSON file in the google cloud console. See Enable the Dialogflow API and Create Service Account Credentials to understand how to obtain the Project ID and the Private Key. These sections explain training and usage of the Dialogflow NLU engine.

Prerequisites: You need to have at least one agent created on the Dialogflow Essentials page, to be able to configure the intent, entity nodes, or FAQs.

To enable intent and entity detection using the Dialogflow engine during a user conversation, you need to create the intents and entities on the Dialogflow Essentials cloud page with the same names used during their creation on Kore.ai XO Platform.

The following steps explain how to create an agent, intent and test the configuration.

  1. Go to Dialogflow Essentials and click Create Agent, if you don’t have any available agent. In this example an agent with the name Test_Dialogflow is created.
  2. Click Create Intent to create an intent with the same name as in your VA.
  3. In this example an intent with name Phone Number Verification is created as we have the same user intent in the VA.
  4. Under Action and Parameters, add Action as per the name of the entity. Add the Parameter Name, Entity, Value and the Prompt details.
  5. Under Responses → Default, add the Text Response to be displayed for the user.
  6. Click Save to save the configuration.
  7. Go to Training in the left side menu and enter the intent name at User Says.
  8. Enter the intent name same as it is in the VA, in the top most right corner of the page in Try Now, to test the Dialogflow configuration.
  9. The configured text response would be displayed under the Default Response.
  10. Note: You can configure any intents, entities or FAQ details which you require to be identified using the Dialogflow ES adapter.

Enable the Dialogflow API

You can activate the Dialogflow API feature for your agent within Dialogflow cloud page.
Follow these steps:

  1. Click the Gear icon next to the agent name from the top left of the Dialogflow dashboard.
  2. The General Settings page is displayed. From there scroll down, to note the project ID value.
  3. Note: The Project ID will be used to fill the credentials while enabling the Dialogflow adapter on the Kore.AI platform.
  4. Click on the project ID to open google cloud.
  5. You will navigate to the Google Cloud dashboard.
  6. Select APIs & Services → Enabled APIs & Services from the left resources menu.
  7. Click + Enable APIs and Services from the top of the display and find the Dialogflow API option.

  8. Upon activation of Dialogflow API, select Manage to open the Dialogflow API management dashboard.

Create Service Account Credentials

The next step on the Dialogflow API management dashboard is to create a set of credentials to use the API, and to connect to the Dialogflow cloud from the Kore.ai platform.

Service Account Creation

Follow these steps to create service account:

  1. Click the button Create Credentials at the top of the screen.
  2. Note: If you already have service accounts with credentials, you can access them from the Credentials option in the left navigation menu.

  3. In the Create Credentials page, the Dialogflow API is by default selected in the Select an API drop-down.
  4. Select Application Data option for What data will you be accessing? as you are creating a service account. Click Next.
  5. Select No. I’m not using them and click Next.
  6. In the Service account details page, provide details for service account name, ID and description as shown below.
  7. Click Create and Continue. The service account is created.
  8. Grant access permissions to this service account and also grant users access to this service account if required in the next pages that get displayed.

Private Key Generation

Follow these steps to generate the private key:

  1. Click on the service account created under Service Accounts in the API & Services page as shown below.
  2. The service account details are displayed as shown in the following screenshot. Go to the Keys tab.
  3. Select Create a new key in the Add Key drop-down to generate the private key.
  4. In the displayed pop-up, select JSON as the option to generate the private key.

Note: The JSON option is by default selected.

A file containing the JSON Private Key information for use in the External NLU settings of Kore.ai platform, is downloaded and saved to your computer.

The file has the layout as follows:
{
"type": "***",
"project_id": "***",
"private_key_id": "***",
"private_key": "***",
"client_email": "***",
"client_id": "***",
"auth_uri": "***",
"token_uri": "***",
"auth_provider_x509_cert_url": "***",
"client_x509_cert_url": "***"
}

Note: Save this JSON payload securely. You will not be able to access it again. The entire content of this JSON file must be copied into the private key field inside the Kore.AI External NLU adapter settings. See Adapter Configuration to know more.

To understand the testing and debugging of your VA, to validate the working of the DialogFlow NLU, see Test and Debug.

メニュー