はじめに
対話型AIプラットフォーム
チャットボットの概要
自然言語処理(NLP)
ボットの概念と用語
クイックスタートガイド
プラットフォームへのアクセス
ボットビルダーの操作
リリースノート
最新バージョン(英語)
以前のバージョン(英語)
廃止機能(英語)
コンセプト
設計
ストーリーボード
ダイアログタスク
ダイアログタスクとは
ダイアログビルダー
ノードタイプ
インテントノード
ダイアログノード
エンティティノード
フォームノード
確認ノード
ロジックノード
ボットアクションノード
サービスノード
Webhookノード
スクリプトノード
グループノード
エージェント転送ノード
ユーザープロンプト
音声通話プロパティ
イベント ハンドラー
ナレッジグラフ
ナレッジグラフの抽出
ナレッジグラフの構築
ボットにナレッジグラフを追加
グラフの作成
ナレッジグラフの構築
既存のソースからFAQを構築
通知タスク
スモールトーク
デジタルスキル
デジタルフォーム
デジタルビュー
デジタルビューとは
パネル
ウィジェット
トレーニング
トレーニングとは
機械学習
機械学習とは
モデル検証
ファンダメンタルミーニング
ナレッジグラフ
示唆
ランキングおよび解決
NLPの詳細設定
NLPのガイドライン
インテリジェンス
インテリジェンスとは
コンテキスト
コンテキストインテント
割り込み
複数インテントの検出
エンティティの変更
デフォルトの会話
センチメント管理
トーン分析
テストとデバッグ
ボットと会話
発話テスト
バッチテスト
会話テスト
デプロイ
チャネル
公開
分析
ボットの分析
NLPメトリクス
会話フロー
Usage Metrics
封じ込め測定
カスタムダッシュボード
カスタムダッシュボードとは
メタタグ
カスタムダッシュボードとウィジェット
LLM and Generative AI
Introduction
LLM Integration
Kore.ai XO GPT Module
Prompts & Requests Library
Co-Pilot Features
Dynamic Conversations Features
ユニバーサルボット
ユニバーサルボットとは
ユニバーサルボットの定義
ユニバーサルボットの作成
ユニバーサルボットのトレーニング
ユニバーサルボットのカスタマイズ
他言語の有効化
ストア
プラントと使用
Overview
Usage Plans
Support Plans
Invoices
管理
ボット認証
複数言語対応ボット
個人を特定できる情報の編集
ボット変数の使用
IVRのシステム連携
一般設定
ボット管理
ハウツー
会話スキルの設計
バンキングボットを作成
バンキングボット – 資金の振り替え
バンキングボット – 残高を更新
ナレッジグラフを構築
スマートアラートの予約方法
Integrations
Actions
Actions Overview
Asana
Configure
Templates
Azure OpenAI
Configure
Templates
BambooHR
Configure
Templates
Bitly
Configure
Templates
Confluence
Configure
Templates
DHL
Configure
Templates
Freshdesk
Configure
Templates
Freshservice
Configure
Templates
Google Maps
Configure
Templates
Here
Configure
Templates
HubSpot
Configure
Templates
JIRA
Configure
Templates
Microsoft Graph
Configure
Templates
Open AI
Configure
Templates
Salesforce
Configure
Templates
ServiceNow
Configure
Templates
Stripe
Configure
Templates
Shopify
Configure
Templates
Twilio
Configure
Templates
Zendesk
Configure
Templates
Agents
Agent Transfer Overview
Custom (BotKit)
Drift
Genesys
Intercom
NiceInContact
NiceInContact(User Hub)
Salesforce
ServiceNow
Configure Tokyo and Lower versions
Configure Utah and Higher versions
Unblu
External NLU Adapters
Overview
Dialogflow Engine
Test and Debug
デジタルスキルの設計
デジタルフォームの設定方法
デジタルビューの設定方法
データテーブルのデータの追加方法
データテーブルのデータの更新方法
Add Data from Digital Forms
ボットのトレーニング
示唆の使用方法
インテントとエンティティのパターンの使用方法
コンテキスト切り替えの管理方法
ボットのデプロイ
エージェント転送の設定方法
ボット関数の使用方法
コンテンツ変数の使用方法
グローバル変数の使用方法
ボットの分析
カスタムダッシュボードの作成方法
カスタムタグを使ってフィルタリング
Data
Overview
Data Table
Table Views
App Definitions
Data as Service
Build a Travel Planning Assistant
Travel Assistant Overview
Create a Travel Virtual Assistant
Design Conversation Skills
Create an ‘Update Booking’ Task
Create a Change Flight Task
Build a Knowledge Graph
Schedule a Smart Alert
Design Digital Skills
Configure Digital Forms
Configure Digital Views
Train the Assistant
Use Traits
Use Patterns
Manage Context Switching
Deploy the Assistant
Use Bot Functions
Use Content Variables
Use Global Variables
Use Web SDK
Build a Banking Assistant
Migrate External Bots
Google Dialogflow Bot
APIs & SDKs
API Reference
API Introduction
Rate Limits
API List
koreUtil Libraries
SDK Reference
SDK Introduction
Web SDK
How the Web SDK Works
SDK Security
SDK Registration
Web Socket Connect and RTM
Tutorials
Widget SDK Tutorial
Web SDK Tutorial
BotKit SDK
BotKit SDK Deployment Guide
Installing the BotKit SDK
Using the BotKit SDK
SDK Events
SDK Functions
Tutorials
BotKit - Blue Prism
BotKit - Flight Search Sample VA
BotKit - Agent Transfer
  1. ホーム
  2. Docs
  3. Virtual Assistants
  4. Builder
  5. Dialog Task
  6. GenAI Prompt (BETA)

GenAI Prompt (BETA)

The GenAI Prompt lets bot developers leverage the full potential of LLM and Generative AI models to quickly build their own prompts. Developers can select a specific AI model, tweak its settings, and preview the response for the prompt. The node allows developers to creatively leverage LLMs by defining the prompt using conversation context and the response from the LLMs in defining the subsequent conversation flow.

Node Behavior

Runtime

You can work with this node like with any other node within Dialog Tasks and can invoke it within multiple tasks. During runtime, the node behaves as follows:

  1. On reaching the GenAI Prompt, the platform parses any variable used in the prompt and constructs the request using the Prompt and the Advanced Settings.
  2. An API call is made to the model with the request.
  3. The response is stored in the context object as part of the dialog context and can be used to define the transitions or any other part of the bot configuration.
  4. The platform exits from the GenAI Prompt node when a successful response is received, or the defined timeout condition is met.

Enable the Node

By default, the feature/node is disabled. To enable the feature, see Dynamic Conversations Features.

Add the Node

  1. Go to Build > Conversational Skills > Dialog Tasks and select the task to which you want to add the GenAI Prompt.
  2. Use the “+” button next to the node under which you want to add the GenAI Prompt. Then, choose GenAI Prompt, and then click New GenAI Prompt. (For more information on adding nodes, see different ways to add a node.) Alternatively, you can drag and drop the GenAI Prompt node to the required location on the canvas.
  3. The GenAI Prompt window is displayed with the Component Properties tab selected by default.

Configure the Node

Component Properties

The settings made within this section affect this node across all instances in all dialog tasks.

General Settings

In this section, you can provide Name and Display Name for the node and write your own OpenAI Prompt.

  • Prompt: A prompt allows you to define the request to be sent to the LLMs for generating a response. Some of the use cases for prompts include entity or topic extraction, rephrasing, or dynamic content generation. The prompt can have up to 2000 characters, and it can be defined using text, Context, Content, and Environment variables.
  • Preview Response: Check the preview of the OpenAI response for your prompt. When you click Preview Response, the Platform parses any variable used in the prompt and constructs OpenAI request using the Prompt and the Advanced Settings. If the response is not relevant, you can tweak the Prompt and the Advanced Settings to make the response better.

Advanced Settings

In this section, you can change the model and tweak its settings.

Adjusting the settings allows you to fine-tune the model’s behavior to meet your needs. The default settings work fine for most cases. However, if required, you can tweak the settings and find the right balance for your use case.
Set System Context, Temperature, and Max Tokens

  • Model: The default model for which the settings are displayed. You can choose another supported mode if it’s configured. If you select a non-default model, it’s used for this node only. If you want to change the default model, you can select the model in the drop-down list and use the Mark Default option shown next to its name.
  • System Context: Add a brief description of the use case context to guide the model.
  • Temperature: The setting controls the randomness of the model’s output. A higher temperature, like 0.8 or above, can result in unexpected, creative, and less relevant responses. On the other hand, a lower temperature, like 0.5 or below, makes the output more focused and relevant.
  • Max Tokens: It indicates the total number of tokens used in the API call to the model. It affects the cost and the time taken to receive a response. A token can be as short as one character or as long as one word, depending on the text.

Advanced Controls

In this section, you can select the maximum wait time to receive a response from the LLM and decide how the bot should respond when the timeout occurs.
Timeout settings for the node

  • Timeout: Select the maximum wait time from the drop-down list. The timeout range can be any value between 10 to 60, the default being 10.
  • Timeout Error Handling: Choose how the bot should respond when the timeout occurs:
    • Close the Task and trigger Task Execution Failure Event
    • Continue with the task and transition to this node; select the node from the drop-down list.

Instance Properties

On the Instance Properties tab, you can configure the instance-specific fields for this GenAI Prompt. These settings are applicable only for this instance and will not affect any other instances of this node.

Custom Tags

In this section, you can add Custom Meta Tags to the conversation flow to profile VA-user conversations and derive business-critical insights from usage and execution metrics. You can add tags for the following:

  • Message: Define custom tags to be added to the current message in the conversation.
  • User: Define custom tags to be added to the user’s profile information.
  • Session: Define custom tags to be added to the current conversation session.

For more information on custom tags, see Custom Meta Tags.

Connections Properties

On the Connections tab, you can set the transition properties to determine the node in the dialog task to execute next. You can write conditional statements based on the values of any Entity or Context Objects in the dialog task, or you can use intents for transitions. See Adding IF-Else Conditions to Node Connections for a detailed setup guide.

Note: These conditions apply only for this instance and will not affect this node when used in any other dialog.

About Responses

All the responses collected are stored in context variables. For example, {{context.GenerativeAINode.NodeName.properties}}. You can define transitions using the context variables.
The responses are captured in a specific format, as shown below.

“context”:{
"GenerativeAINode": {
    "NodeName": {
      "id": "cmpl-7UbzLTumD9ALpfa1mcpf15dK3RnWM",
      "object": "text_completion",
      "created": 1687530223,
      "model": "text-davinci-003",
      "choices": [
        {
          "text": "\n\nI'm sorry, I'm not able to provide that information. However, I would be happy to direct you to a website that may provide the information you are looking for.",
          "index": 0,
          "logprobs": null,
          "finish_reason": "stop"
        }
      ],
      "usage": {
        "prompt_tokens": 58,
        "completion_tokens": 37,
        "total_tokens": 95
      },
      "1687530221473": [
        {
          "nodeId": "NodeName",
          "startTime": "2023-06-23T14:23:42.904Z",
          "endTime": "2023-06-23T14:23:46.029Z"
        }
      ]
    }
  }
}

GenAI Prompt (BETA)

The GenAI Prompt lets bot developers leverage the full potential of LLM and Generative AI models to quickly build their own prompts. Developers can select a specific AI model, tweak its settings, and preview the response for the prompt. The node allows developers to creatively leverage LLMs by defining the prompt using conversation context and the response from the LLMs in defining the subsequent conversation flow.

Node Behavior

Runtime

You can work with this node like with any other node within Dialog Tasks and can invoke it within multiple tasks. During runtime, the node behaves as follows:

  1. On reaching the GenAI Prompt, the platform parses any variable used in the prompt and constructs the request using the Prompt and the Advanced Settings.
  2. An API call is made to the model with the request.
  3. The response is stored in the context object as part of the dialog context and can be used to define the transitions or any other part of the bot configuration.
  4. The platform exits from the GenAI Prompt node when a successful response is received, or the defined timeout condition is met.

Enable the Node

By default, the feature/node is disabled. To enable the feature, see Dynamic Conversations Features.

Add the Node

  1. Go to Build > Conversational Skills > Dialog Tasks and select the task to which you want to add the GenAI Prompt.
  2. Use the “+” button next to the node under which you want to add the GenAI Prompt. Then, choose GenAI Prompt, and then click New GenAI Prompt. (For more information on adding nodes, see different ways to add a node.) Alternatively, you can drag and drop the GenAI Prompt node to the required location on the canvas.
  3. The GenAI Prompt window is displayed with the Component Properties tab selected by default.

Configure the Node

Component Properties

The settings made within this section affect this node across all instances in all dialog tasks.

General Settings

In this section, you can provide Name and Display Name for the node and write your own OpenAI Prompt.

  • Prompt: A prompt allows you to define the request to be sent to the LLMs for generating a response. Some of the use cases for prompts include entity or topic extraction, rephrasing, or dynamic content generation. The prompt can have up to 2000 characters, and it can be defined using text, Context, Content, and Environment variables.
  • Preview Response: Check the preview of the OpenAI response for your prompt. When you click Preview Response, the Platform parses any variable used in the prompt and constructs OpenAI request using the Prompt and the Advanced Settings. If the response is not relevant, you can tweak the Prompt and the Advanced Settings to make the response better.

Advanced Settings

In this section, you can change the model and tweak its settings.

Adjusting the settings allows you to fine-tune the model’s behavior to meet your needs. The default settings work fine for most cases. However, if required, you can tweak the settings and find the right balance for your use case.
Set System Context, Temperature, and Max Tokens

  • Model: The default model for which the settings are displayed. You can choose another supported mode if it’s configured. If you select a non-default model, it’s used for this node only. If you want to change the default model, you can select the model in the drop-down list and use the Mark Default option shown next to its name.
  • System Context: Add a brief description of the use case context to guide the model.
  • Temperature: The setting controls the randomness of the model’s output. A higher temperature, like 0.8 or above, can result in unexpected, creative, and less relevant responses. On the other hand, a lower temperature, like 0.5 or below, makes the output more focused and relevant.
  • Max Tokens: It indicates the total number of tokens used in the API call to the model. It affects the cost and the time taken to receive a response. A token can be as short as one character or as long as one word, depending on the text.

Advanced Controls

In this section, you can select the maximum wait time to receive a response from the LLM and decide how the bot should respond when the timeout occurs.
Timeout settings for the node

  • Timeout: Select the maximum wait time from the drop-down list. The timeout range can be any value between 10 to 60, the default being 10.
  • Timeout Error Handling: Choose how the bot should respond when the timeout occurs:
    • Close the Task and trigger Task Execution Failure Event
    • Continue with the task and transition to this node; select the node from the drop-down list.

Instance Properties

On the Instance Properties tab, you can configure the instance-specific fields for this GenAI Prompt. These settings are applicable only for this instance and will not affect any other instances of this node.

Custom Tags

In this section, you can add Custom Meta Tags to the conversation flow to profile VA-user conversations and derive business-critical insights from usage and execution metrics. You can add tags for the following:

  • Message: Define custom tags to be added to the current message in the conversation.
  • User: Define custom tags to be added to the user’s profile information.
  • Session: Define custom tags to be added to the current conversation session.

For more information on custom tags, see Custom Meta Tags.

Connections Properties

On the Connections tab, you can set the transition properties to determine the node in the dialog task to execute next. You can write conditional statements based on the values of any Entity or Context Objects in the dialog task, or you can use intents for transitions. See Adding IF-Else Conditions to Node Connections for a detailed setup guide.

Note: These conditions apply only for this instance and will not affect this node when used in any other dialog.

About Responses

All the responses collected are stored in context variables. For example, {{context.GenerativeAINode.NodeName.properties}}. You can define transitions using the context variables.
The responses are captured in a specific format, as shown below.

“context”:{
"GenerativeAINode": {
    "NodeName": {
      "id": "cmpl-7UbzLTumD9ALpfa1mcpf15dK3RnWM",
      "object": "text_completion",
      "created": 1687530223,
      "model": "text-davinci-003",
      "choices": [
        {
          "text": "\n\nI'm sorry, I'm not able to provide that information. However, I would be happy to direct you to a website that may provide the information you are looking for.",
          "index": 0,
          "logprobs": null,
          "finish_reason": "stop"
        }
      ],
      "usage": {
        "prompt_tokens": 58,
        "completion_tokens": 37,
        "total_tokens": 95
      },
      "1687530221473": [
        {
          "nodeId": "NodeName",
          "startTime": "2023-06-23T14:23:42.904Z",
          "endTime": "2023-06-23T14:23:46.029Z"
        }
      ]
    }
  }
}
メニュー