はじめに
対話型AIプラットフォーム
チャットボットの概要
自然言語処理(NLP)
ボットの概念と用語
クイックスタートガイド
プラットフォームへのアクセス
ボットビルダーの操作
リリースノート
最新バージョン(英語)
以前のバージョン(英語)
コンセプト
設計
ストーリーボード
ダイアログタスク
ダイアログタスクとは
ダイアログビルダー
ノードタイプ
インテントノード
ダイアログノード
エンティティノード
フォームノード
確認ノード
ロジックノード
ボットアクションノード
サービスノード
Webhookノード
スクリプトノード
グループノード
エージェント転送ノード
ユーザープロンプト
音声通話プロパティ
イベント ハンドラー
ナレッジグラフ
ナレッジグラフの抽出
ナレッジグラフの構築
ボットにナレッジグラフを追加
グラフの作成
ナレッジグラフの構築
既存のソースからFAQを構築
通知タスク
スモールトーク
デジタルスキル
デジタルフォーム
デジタルビュー
デジタルビューとは
パネル
ウィジェット
トレーニング
トレーニングとは
機械学習
機械学習とは
モデル検証
ファンダメンタルミーニング
ナレッジグラフ
示唆
ランキングおよび解決
NLPの詳細設定
NLPのガイドライン
インテリジェンス
インテリジェンスとは
コンテキスト
コンテキストインテント
割り込み
複数インテントの検出
エンティティの変更
デフォルトの会話
センチメント管理
トーン分析
テストとデバッグ
ボットと会話
発話テスト
バッチテスト
会話テスト
デプロイ
チャネル
公開
LLM and Generative AI
Introduction
LLM Integration
Kore.ai XO GPT Module
Prompts & Requests Library
Co-Pilot Features
Dynamic Conversations Features
分析
ボットの分析
NLPメトリクス
会話フロー
Usage Metrics
封じ込め測定
カスタムダッシュボード
カスタムダッシュボードとは
メタタグ
カスタムダッシュボードとウィジェット
ユニバーサルボット
ユニバーサルボットとは
ユニバーサルボットの定義
ユニバーサルボットの作成
ユニバーサルボットのトレーニング
ユニバーサルボットのカスタマイズ
他言語の有効化
ストア
プラントと使用
Overview
Usage Plans
Support Plans
Invoices
管理
ボット認証
複数言語対応ボット
個人を特定できる情報の編集
ボット変数の使用
IVRのシステム連携
一般設定
ボット管理
ハウツー
Integrations
Actions
Actions Overview
Asana
Configure
Templates
Azure OpenAI
Configure
Templates
BambooHR
Configure
Templates
Bitly
Configure
Templates
Confluence
Configure
Templates
DHL
Configure
Templates
Freshdesk
Configure
Templates
Freshservice
Configure
Templates
Google Maps
Configure
Templates
Here
Configure
Templates
HubSpot
Configure
Templates
JIRA
Configure
Templates
Microsoft Graph
Configure
Templates
Open AI
Configure
Templates
Salesforce
Configure
Templates
ServiceNow
Configure
Templates
Stripe
Configure
Templates
Shopify
Configure
Templates
Twilio
Configure
Templates
Zendesk
Configure
Templates
Agents
Agent Transfer Overview
Custom (BotKit)
Drift
Genesys
Intercom
NiceInContact
NiceInContact(User Hub)
Salesforce
ServiceNow
Configure Tokyo and Lower versions
Configure Utah and Higher versions
Unblu
External NLU Adapters
Overview
Dialogflow Engine
Test and Debug
会話スキルの設計
バンキングボットを作成
バンキングボット – 資金の振り替え
バンキングボット – 残高を更新
ナレッジグラフを構築
スマートアラートの予約方法
デジタルスキルの設計
デジタルフォームの設定方法
デジタルビューの設定方法
データテーブルのデータの追加方法
データテーブルのデータの更新方法
Add Data from Digital Forms
ボットのトレーニング
示唆の使用方法
インテントとエンティティのパターンの使用方法
コンテキスト切り替えの管理方法
ボットのデプロイ
エージェント転送の設定方法
ボット関数の使用方法
コンテンツ変数の使用方法
グローバル変数の使用方法
ボットの分析
カスタムダッシュボードの作成方法
カスタムタグを使ってフィルタリング
Data
Overview
Data Table
Table Views
App Definitions
Data as Service
Build a Travel Planning Assistant
Travel Assistant Overview
Create a Travel Virtual Assistant
Design Conversation Skills
Create an ‘Update Booking’ Task
Create a Change Flight Task
Build a Knowledge Graph
Schedule a Smart Alert
Design Digital Skills
Configure Digital Forms
Configure Digital Views
Train the Assistant
Use Traits
Use Patterns
Manage Context Switching
Deploy the Assistant
Use Bot Functions
Use Content Variables
Use Global Variables
Use Web SDK
Build a Banking Assistant
Migrate External Bots
Google Dialogflow Bot
APIs & SDKs
API Reference
API Introduction
Rate Limits
API List
koreUtil Libraries
SDK Reference
SDK Introduction
Web SDK
How the Web SDK Works
SDK Security
SDK Registration
Web Socket Connect and RTM
Tutorials
Widget SDK Tutorial
Web SDK Tutorial
BotKit SDK
BotKit SDK Deployment Guide
Installing the BotKit SDK
Using the BotKit SDK
SDK Events
SDK Functions
Tutorials
BotKit - Blue Prism
BotKit - Flight Search Sample VA
BotKit - Agent Transfer
  1. ホーム
  2. Docs
  3. Virtual Assistants
  4. SDKs
  5. BotKit SDK Deployment Guide: Architecture, Hosting, and Best Practices

BotKit SDK Deployment Guide: Architecture, Hosting, and Best Practices

The Kore.ai BotKit SDK is a powerful tool for extending and customizing Kore.ai virtual assistants. It allows developers to intercept messages sent to the Kore.ai platform and add custom processing logic, enabling advanced bot behaviors and integrations. However, deploying the BotKit SDK in a production environment requires careful planning and consideration to ensure scalability, high availability, and optimal performance.

This guide provides a comprehensive overview of the architecture, hosting options, system requirements, performance optimization techniques, load testing strategies, high availability configurations, API gateway integration, and security best practices for deploying the Kore.ai BotKit SDK at scale. Whether you are a developer, DevOps engineer, or IT architect, this handbook will provide you with the knowledge and guidelines necessary to successfully deploy and operate BotKit-enabled virtual assistants in an enterprise environment.

We will begin by discussing the overall architecture and integration patterns between the Kore.ai platform and the BotKit SDK. Then, we will explore various hosting options and the system requirements for running BotKit. Performance optimization and load testing will be covered in detail, including best practices for writing efficient BotKit code and simulating production loads. We will also delve into high availability considerations, API gateway configuration, authentication and authorization mechanisms, and rate-limiting strategies.

By following the guidelines and best practices outlined in this guide, you can confidently deploy the Kore.ai BotKit SDK, knowing that your virtual assistant can handle high traffic loads, provide optimal response times, and maintain high availability and security. Let’s get started on the path to BotKit production readiness!

Architecture

  • The BotKit SDK is a Node.js application that enables intercepting messages to the Kore.ai platform to add custom processing.
  • It runs as a standalone service that receives events from the Kore.ai platform based on the dialog flow.
  • The SDK receives message events, feedback survey events, and webhook events from Kore.ai.
  • It can send responses back to Kore.ai to control the conversation flow.

Hosting Considerations

  • The BotKit SDK can be hosted on a dedicated VM or using serverless functions like AWS Lambda.
  • A typical VM configuration starts with 2 vCPUs and 4GB memory. Adjust based on load and performance testing.
  • Follow the BotKit installation steps provided in the Kore.ai documentation.

System Requirements

  • Node.js version 16 or higher
  • Typical starting server spec: 2 vCPU, 4GB memory

Performance

  • Load test the BotKit API to ensure it provides the required throughput.
  • Use tools like Apache Bench or JMeter to simulate request load and benchmark the BotKit instance.
  • Ensure all code within BotKit handlers uses asynchronous processing to avoid blocking the event loop.
  • Any synchronous, long-running code will negatively impact the overall responsiveness and throughput.

High Availability

  • Deploy multiple BotKit instances behind a load balancer in an active-active, highly available configuration.
  • Ensure the BotKit process is monitored and automatically restarted on failure.

Asynchronous API

  • Kore.ai sends events to the configured BotKit API endpoint.
  • BotKit supports asynchronous communication – Kore.ai can call the API with a return URL.
  • BotKit should respond with an ACK immediately, then call the return URL to submit the final response later.

API Authorization

  • Whitelist the Kore.ai platform IP addresses so that only Kore.ai can call your BotKit API.
  • Require Kore.ai to authenticate requests using the Client ID and Secret generated when registering the BotKit app.

Rate Limit

  • Implement a rate limit on the BotKit API to protect against excessive requests.
  • Enforce limits per API key to prevent individual clients from overloading the system.

BotKit SDK Deployment Guide: Architecture, Hosting, and Best Practices

The Kore.ai BotKit SDK is a powerful tool for extending and customizing Kore.ai virtual assistants. It allows developers to intercept messages sent to the Kore.ai platform and add custom processing logic, enabling advanced bot behaviors and integrations. However, deploying the BotKit SDK in a production environment requires careful planning and consideration to ensure scalability, high availability, and optimal performance.

This guide provides a comprehensive overview of the architecture, hosting options, system requirements, performance optimization techniques, load testing strategies, high availability configurations, API gateway integration, and security best practices for deploying the Kore.ai BotKit SDK at scale. Whether you are a developer, DevOps engineer, or IT architect, this handbook will provide you with the knowledge and guidelines necessary to successfully deploy and operate BotKit-enabled virtual assistants in an enterprise environment.

We will begin by discussing the overall architecture and integration patterns between the Kore.ai platform and the BotKit SDK. Then, we will explore various hosting options and the system requirements for running BotKit. Performance optimization and load testing will be covered in detail, including best practices for writing efficient BotKit code and simulating production loads. We will also delve into high availability considerations, API gateway configuration, authentication and authorization mechanisms, and rate-limiting strategies.

By following the guidelines and best practices outlined in this guide, you can confidently deploy the Kore.ai BotKit SDK, knowing that your virtual assistant can handle high traffic loads, provide optimal response times, and maintain high availability and security. Let’s get started on the path to BotKit production readiness!

Architecture

  • The BotKit SDK is a Node.js application that enables intercepting messages to the Kore.ai platform to add custom processing.
  • It runs as a standalone service that receives events from the Kore.ai platform based on the dialog flow.
  • The SDK receives message events, feedback survey events, and webhook events from Kore.ai.
  • It can send responses back to Kore.ai to control the conversation flow.

Hosting Considerations

  • The BotKit SDK can be hosted on a dedicated VM or using serverless functions like AWS Lambda.
  • A typical VM configuration starts with 2 vCPUs and 4GB memory. Adjust based on load and performance testing.
  • Follow the BotKit installation steps provided in the Kore.ai documentation.

System Requirements

  • Node.js version 16 or higher
  • Typical starting server spec: 2 vCPU, 4GB memory

Performance

  • Load test the BotKit API to ensure it provides the required throughput.
  • Use tools like Apache Bench or JMeter to simulate request load and benchmark the BotKit instance.
  • Ensure all code within BotKit handlers uses asynchronous processing to avoid blocking the event loop.
  • Any synchronous, long-running code will negatively impact the overall responsiveness and throughput.

High Availability

  • Deploy multiple BotKit instances behind a load balancer in an active-active, highly available configuration.
  • Ensure the BotKit process is monitored and automatically restarted on failure.

Asynchronous API

  • Kore.ai sends events to the configured BotKit API endpoint.
  • BotKit supports asynchronous communication – Kore.ai can call the API with a return URL.
  • BotKit should respond with an ACK immediately, then call the return URL to submit the final response later.

API Authorization

  • Whitelist the Kore.ai platform IP addresses so that only Kore.ai can call your BotKit API.
  • Require Kore.ai to authenticate requests using the Client ID and Secret generated when registering the BotKit app.

Rate Limit

  • Implement a rate limit on the BotKit API to protect against excessive requests.
  • Enforce limits per API key to prevent individual clients from overloading the system.
メニュー