はじめに
対話型AIプラットフォーム
チャットボットの概要
自然言語処理(NLP)
ボットの概念と用語
クイックスタートガイド
プラットフォームへのアクセス
ボットビルダーの操作
リリースノート
最新バージョン(英語)
以前のバージョン(英語)
コンセプト
設計
ストーリーボード
ダイアログタスク
ダイアログタスクとは
ダイアログビルダー
ノードタイプ
インテントノード
ダイアログノード
エンティティノード
フォームノード
確認ノード
ロジックノード
ボットアクションノード
サービスノード
Webhookノード
スクリプトノード
グループノード
エージェント転送ノード
ユーザープロンプト
音声通話プロパティ
イベント ハンドラー
ナレッジグラフ
ナレッジグラフの抽出
ナレッジグラフの構築
ボットにナレッジグラフを追加
グラフの作成
ナレッジグラフの構築
既存のソースからFAQを構築
通知タスク
スモールトーク
デジタルスキル
デジタルフォーム
デジタルビュー
デジタルビューとは
パネル
ウィジェット
トレーニング
トレーニングとは
機械学習
機械学習とは
モデル検証
ファンダメンタルミーニング
ナレッジグラフ
示唆
ランキングおよび解決
NLPの詳細設定
NLPのガイドライン
インテリジェンス
インテリジェンスとは
コンテキスト
コンテキストインテント
割り込み
複数インテントの検出
エンティティの変更
デフォルトの会話
センチメント管理
トーン分析
テストとデバッグ
ボットと会話
発話テスト
バッチテスト
会話テスト
デプロイ
チャネル
公開
LLM and Generative AI
Introduction
LLM Integration
Kore.ai XO GPT Module
Prompts & Requests Library
Co-Pilot Features
Dynamic Conversations Features
分析
ボットの分析
NLPメトリクス
会話フロー
Usage Metrics
封じ込め測定
カスタムダッシュボード
カスタムダッシュボードとは
メタタグ
カスタムダッシュボードとウィジェット
ユニバーサルボット
ユニバーサルボットとは
ユニバーサルボットの定義
ユニバーサルボットの作成
ユニバーサルボットのトレーニング
ユニバーサルボットのカスタマイズ
他言語の有効化
ストア
プラントと使用
Overview
Usage Plans
Support Plans
Invoices
管理
ボット認証
複数言語対応ボット
個人を特定できる情報の編集
ボット変数の使用
IVRのシステム連携
一般設定
ボット管理
ハウツー
Integrations
Actions
Actions Overview
Asana
Configure
Templates
Azure OpenAI
Configure
Templates
BambooHR
Configure
Templates
Bitly
Configure
Templates
Confluence
Configure
Templates
DHL
Configure
Templates
Freshdesk
Configure
Templates
Freshservice
Configure
Templates
Google Maps
Configure
Templates
Here
Configure
Templates
HubSpot
Configure
Templates
JIRA
Configure
Templates
Microsoft Graph
Configure
Templates
Open AI
Configure
Templates
Salesforce
Configure
Templates
ServiceNow
Configure
Templates
Stripe
Configure
Templates
Shopify
Configure
Templates
Twilio
Configure
Templates
Zendesk
Configure
Templates
Agents
Agent Transfer Overview
Custom (BotKit)
Drift
Genesys
Intercom
NiceInContact
NiceInContact(User Hub)
Salesforce
ServiceNow
Configure Tokyo and Lower versions
Configure Utah and Higher versions
Unblu
External NLU Adapters
Overview
Dialogflow Engine
Test and Debug
会話スキルの設計
バンキングボットを作成
バンキングボット – 資金の振り替え
バンキングボット – 残高を更新
ナレッジグラフを構築
スマートアラートの予約方法
デジタルスキルの設計
デジタルフォームの設定方法
デジタルビューの設定方法
データテーブルのデータの追加方法
データテーブルのデータの更新方法
Add Data from Digital Forms
ボットのトレーニング
示唆の使用方法
インテントとエンティティのパターンの使用方法
コンテキスト切り替えの管理方法
ボットのデプロイ
エージェント転送の設定方法
ボット関数の使用方法
コンテンツ変数の使用方法
グローバル変数の使用方法
ボットの分析
カスタムダッシュボードの作成方法
カスタムタグを使ってフィルタリング
Data
Overview
Data Table
Table Views
App Definitions
Data as Service
Build a Travel Planning Assistant
Travel Assistant Overview
Create a Travel Virtual Assistant
Design Conversation Skills
Create an ‘Update Booking’ Task
Create a Change Flight Task
Build a Knowledge Graph
Schedule a Smart Alert
Design Digital Skills
Configure Digital Forms
Configure Digital Views
Train the Assistant
Use Traits
Use Patterns
Manage Context Switching
Deploy the Assistant
Use Bot Functions
Use Content Variables
Use Global Variables
Use Web SDK
Build a Banking Assistant
Migrate External Bots
Google Dialogflow Bot
APIs & SDKs
API Reference
API Introduction
Rate Limits
API List
koreUtil Libraries
SDK Reference
SDK Introduction
Web SDK
How the Web SDK Works
SDK Security
SDK Registration
Web Socket Connect and RTM
Tutorials
Widget SDK Tutorial
Web SDK Tutorial
BotKit SDK
BotKit SDK Deployment Guide
Installing the BotKit SDK
Using the BotKit SDK
SDK Events
SDK Functions
Tutorials
BotKit - Blue Prism
BotKit - Flight Search Sample VA
BotKit - Agent Transfer
  1. ホーム
  2. Docs
  3. Virtual Assistants
  4. Natural Language
  5. LLM and Generative AI
  6. Introduction to LLM and Generative AI

Introduction to LLM and Generative AI

The Kore.ai XO Platform helps enhance your bot development process and enrich end-user conversational experiences by integrating pre-built (OpenAI, Azure OpenAI, Anthropic) or custom models  or Kore.ai XO GPT Module in the backend.

In addition to the out-of-box integration with pre-built models, the Platform supports the bring-your-own (BYO) model framework to integrate with externally hosted models by third parties as well as models hosted by the enterprises themselves. The framework allows the creation of custom prompts that are optimized for specific purposes and models. This generic framework works seamlessly with the Auth Profiles module of the Platform, enabling enterprises to use the authentication mechanism of their choice.

The new Kore.ai XO GPT Models module provides fine-tuned large language models optimized for enterprise conversational AI applications. These models have been evaluated and fine-tuned to be accurate, safe, and efficient for production deployment. For more information, see Kore.ai XO GPT.

By leveraging LLM and Generative AI capabilities, you can create intelligent, human-like conversational experiences for your end-users.

You can find Generative AI and LLM features by going to Build > Natural Language > Generative AI & LLM.

Key Features

The Integration of Generative AI and LLM enables the following features:

  • Prompts & Requests Library: Complete flexibility to create fully customized prompts optimized for particular use cases using pre-built or custom models.
  • Co-Pilot features:
    • Automatic Dialog Generation: This feature helps build production-ready dialog tasks automatically by briefly describing the task. A preview of the generated dialog is available and lets you modify the intent description and create multiple iterations of the dialog.
    • Conversation Test Cases Suggestion: The Platform suggests simulated user inputs covering various scenarios from an end-user perspective at every test step. You can use these suggestions to create test suites.
    • Conversation Summary: Implements the Conversation Summary public API to fetch the details of the entire conversation between the customer and the VA or agent. This API leverages an open-source LLM to summarize conversations.
    • NLP Batch Test Cases Suggestion: The Platform generates NLP test cases for every intent, including entity checks. You only need to create test suites in the Builder using the generated testing utterances.
    • Training Utterance Suggestions: Generate high-quality training data quickly and easily with our platform’s suggested utterances for each intent. Review and add the suggestions as needed to create a powerful training set for your bot.
    • Use Case Suggestions: Uses the Open AI LLM model to generate use cases during the VA (Bot) creation journey.
  • Dynamic Conversations features:
    • GenAI Node: Collect Entities from end-users in a free-flowing conversation using LLM and Generative AI in the background. You can define entities to be collected as well as rules & scenarios.
    • Answer from Documents: Helps answer end-user queries from unstructured PDF documents without the need to extract individual FAQs and train them.
    • GenAI Prompt: Leverage this node to unlock the power of Generative AI with your prompts, enabling you to build creative and custom use cases.
    • Rephrase Dialog Responses: Enhance end-user experience with empathetic and contextual bot responses.
    • Zero-shot ML Model: Uses the Open AI LLM model for intent identification during run time based on semantic similarity.
    • Repeat Responses: Use LLM to reiterate the last bot responses when the Repeat Bot Response event is triggered.
    • Rephrase User Query: Improve intent detection and entity extraction by enriching the user query with relevant details from the ongoing conversation context.
    • Few-shot ML Model: Uses the Kore Ai’s hosted embeddings for intent identification during run time based on semantic similarity.

Benefits

All these features benefit VA developers, NLP developers, and testers as follows:

  • Being able to select among Kore.ai XO GPT or custom or pre-built LLM integrations.
  • Developers can create dialog tasks on the fly through the prebuilt Dialog Tasks Flow.
  • Developers can unlock the power of Generative AI with their prompts, enabling them to build creative and custom use cases.
  • Mundane tasks like generating dialog tasks or training utterances are automated to help developers be more productive and focus on other important tasks like enhancing conversation design, creating complex test cases, and more.
  • Testers can ensure that their intent descriptions are meaningful in the right context to generate the right content.
  • The Platform provides suggestions and nudges developers in the right direction for the better design and development of Virtual Assistants. For example, it offers curated use case suggestions while creating the VA, including probable user inputs (simulating end-user behavior) in Conversation Testing. This way, the VA can simulate the end user’s behavior at every conversation step and respond more realistically by considering error scenarios, digressions, and contextual changes.
  • Allows enterprises and advanced users to bypass the platform’s pre-built integrations. They can establish customized connections to large language models and optimize prompts and requests for their specific use cases.

Important Considerations

Generative AI features are available for English and non-English NLU and VA languages on the Kore.ai XO Platform. However, custom LLM-specific features are currently limited to English. To learn more about managing languages for VAs, click here.

LLM and Generative AI also require sharing data with third parties: OpenAI (when using the OpenAI integration) or OpenAI and Microsoft (when using the Azure integration).

Next Steps

  1. Integrate a pre-built or custom or Kore.ai XO GPT LLM
  2. (Optional – only for custom LLM model) Add Prompts.
  3. Enable Co-Pilot and Dynamic Conversations features.

Introduction to LLM and Generative AI

The Kore.ai XO Platform helps enhance your bot development process and enrich end-user conversational experiences by integrating pre-built (OpenAI, Azure OpenAI, Anthropic) or custom models  or Kore.ai XO GPT Module in the backend.

In addition to the out-of-box integration with pre-built models, the Platform supports the bring-your-own (BYO) model framework to integrate with externally hosted models by third parties as well as models hosted by the enterprises themselves. The framework allows the creation of custom prompts that are optimized for specific purposes and models. This generic framework works seamlessly with the Auth Profiles module of the Platform, enabling enterprises to use the authentication mechanism of their choice.

The new Kore.ai XO GPT Models module provides fine-tuned large language models optimized for enterprise conversational AI applications. These models have been evaluated and fine-tuned to be accurate, safe, and efficient for production deployment. For more information, see Kore.ai XO GPT.

By leveraging LLM and Generative AI capabilities, you can create intelligent, human-like conversational experiences for your end-users.

You can find Generative AI and LLM features by going to Build > Natural Language > Generative AI & LLM.

Key Features

The Integration of Generative AI and LLM enables the following features:

  • Prompts & Requests Library: Complete flexibility to create fully customized prompts optimized for particular use cases using pre-built or custom models.
  • Co-Pilot features:
    • Automatic Dialog Generation: This feature helps build production-ready dialog tasks automatically by briefly describing the task. A preview of the generated dialog is available and lets you modify the intent description and create multiple iterations of the dialog.
    • Conversation Test Cases Suggestion: The Platform suggests simulated user inputs covering various scenarios from an end-user perspective at every test step. You can use these suggestions to create test suites.
    • Conversation Summary: Implements the Conversation Summary public API to fetch the details of the entire conversation between the customer and the VA or agent. This API leverages an open-source LLM to summarize conversations.
    • NLP Batch Test Cases Suggestion: The Platform generates NLP test cases for every intent, including entity checks. You only need to create test suites in the Builder using the generated testing utterances.
    • Training Utterance Suggestions: Generate high-quality training data quickly and easily with our platform’s suggested utterances for each intent. Review and add the suggestions as needed to create a powerful training set for your bot.
    • Use Case Suggestions: Uses the Open AI LLM model to generate use cases during the VA (Bot) creation journey.
  • Dynamic Conversations features:
    • GenAI Node: Collect Entities from end-users in a free-flowing conversation using LLM and Generative AI in the background. You can define entities to be collected as well as rules & scenarios.
    • Answer from Documents: Helps answer end-user queries from unstructured PDF documents without the need to extract individual FAQs and train them.
    • GenAI Prompt: Leverage this node to unlock the power of Generative AI with your prompts, enabling you to build creative and custom use cases.
    • Rephrase Dialog Responses: Enhance end-user experience with empathetic and contextual bot responses.
    • Zero-shot ML Model: Uses the Open AI LLM model for intent identification during run time based on semantic similarity.
    • Repeat Responses: Use LLM to reiterate the last bot responses when the Repeat Bot Response event is triggered.
    • Rephrase User Query: Improve intent detection and entity extraction by enriching the user query with relevant details from the ongoing conversation context.
    • Few-shot ML Model: Uses the Kore Ai’s hosted embeddings for intent identification during run time based on semantic similarity.

Benefits

All these features benefit VA developers, NLP developers, and testers as follows:

  • Being able to select among Kore.ai XO GPT or custom or pre-built LLM integrations.
  • Developers can create dialog tasks on the fly through the prebuilt Dialog Tasks Flow.
  • Developers can unlock the power of Generative AI with their prompts, enabling them to build creative and custom use cases.
  • Mundane tasks like generating dialog tasks or training utterances are automated to help developers be more productive and focus on other important tasks like enhancing conversation design, creating complex test cases, and more.
  • Testers can ensure that their intent descriptions are meaningful in the right context to generate the right content.
  • The Platform provides suggestions and nudges developers in the right direction for the better design and development of Virtual Assistants. For example, it offers curated use case suggestions while creating the VA, including probable user inputs (simulating end-user behavior) in Conversation Testing. This way, the VA can simulate the end user’s behavior at every conversation step and respond more realistically by considering error scenarios, digressions, and contextual changes.
  • Allows enterprises and advanced users to bypass the platform’s pre-built integrations. They can establish customized connections to large language models and optimize prompts and requests for their specific use cases.

Important Considerations

Generative AI features are available for English and non-English NLU and VA languages on the Kore.ai XO Platform. However, custom LLM-specific features are currently limited to English. To learn more about managing languages for VAs, click here.

LLM and Generative AI also require sharing data with third parties: OpenAI (when using the OpenAI integration) or OpenAI and Microsoft (when using the Azure integration).

Next Steps

  1. Integrate a pre-built or custom or Kore.ai XO GPT LLM
  2. (Optional – only for custom LLM model) Add Prompts.
  3. Enable Co-Pilot and Dynamic Conversations features.
メニュー