GETTING STARTED
Kore.ai XO Platform
Virtual Assistants Overview
Natural Language Processing (NLP)
Concepts and Terminology
Quick Start Guide
Accessing the Platform
Navigating the Kore.ai XO Platform
Building a Virtual Assistant
Help & Learning Resources
Release Notes
Current Version
Recent Updates
Previous Versions
Deprecations
Request a Feature
CONCEPTS
Design
Storyboard
Overview
FAQs
Conversation Designer
Overview
Dialog Tasks
Mock Scenes
Dialog Tasks
Overview
Navigate Dialog Tasks
Build Dialog Tasks
Node Types
Overview
Intent Node
Dialog Node
Dynamic Intent Node
GenAI Node
GenAI Prompt
Entity Node
Form Node
Confirmation Node
Message Nodes
Logic Node
Bot Action Node
Service Node
Webhook Node
Script Node
Process Node
Agent Transfer
Node Connections
Node Connections Setup
Sub-Intent Scoping
Entity Types
Entity Rules
User Prompts or Messages
Voice Call Properties
Knowledge AI
Introduction
Knowledge Graph
Introduction
Terminology
Build a Knowledge Graph
Manage FAQs
Knowledge Extraction
Import or Export Knowledge Graph
Prepare Data for Import
Importing Knowledge Graph
Exporting Knowledge Graph
Auto-Generate Knowledge Graph
Knowledge Graph Analysis
Answer from Documents
Alert Tasks
Small Talk
Digital Skills
Overview
Digital Forms
Digital Views
Introduction
Widgets
Panels
Session and Context Variables
Context Object
Intent Discovery
Train
NLP Optimization
ML Engine
Overview
Model Validation
FM Engine
KG Engine
Traits Engine
Ranking and Resolver
Training Validations
NLP Configurations
NLP Guidelines
LLM and Generative AI
Introduction
LLM Integration
Kore.ai XO GPT Module
Prompts & Requests Library
Co-Pilot Features
Dynamic Conversations Features
Intelligence
Introduction
Event Handlers
Contextual Memory
Contextual Intents
Interruption Management
Multi-intent Detection
Amending Entities
Default Conversations
Conversation Driven Dialog Builder
Sentinment Management
Tone Analysis
Default Standard Responses
Ignore Words & Field Memory
Test & Debug
Overview
Talk to Bot
Utterance Testing
Batch Testing
Conversation Testing
Conversation Testing Overview
Create a Test Suite
Test Editor
Test Case Assertion
Test Case Execution Summary
Glossary
Health and Monitoring
NLP Health
Flow Health
Integrations
Actions
Actions Overview
Asana
Configure
Templates
Azure OpenAI
Configure
Templates
BambooHR
Configure
Templates
Bitly
Configure
Templates
Confluence
Configure
Templates
DHL
Configure
Templates
Freshdesk
Configure
Templates
Freshservice
Configure
Templates
Google Maps
Configure
Templates
Here
Configure
Templates
HubSpot
Configure
Templates
JIRA
Configure
Templates
Microsoft Graph
Configure
Templates
Open AI
Configure
Templates
Salesforce
Configure
Templates
ServiceNow
Configure
Templates
Stripe
Configure
Templates
Shopify
Configure
Templates
Twilio
Configure
Templates
Zendesk
Configure
Templates
Agents
Agent Transfer Overview
Custom (BotKit)
Drift
Genesys
Intercom
NiceInContact
NiceInContact(User Hub)
Salesforce
ServiceNow
Configure Tokyo and Lower versions
Configure Utah and Higher versions
Unblu
External NLU Adapters
Overview
Dialogflow Engine
Test and Debug
Deploy
Channels
Publishing
Versioning
Analyze
Introduction
Dashboard Filters
Overview Dashboard
Conversations Dashboard
Users Dashboard
Performance Dashboard
Custom Dashboards
Introduction
Custom Meta Tags
Create Custom Dashboard
Create Custom Dashboard Filters
LLM and Generative AI Logs
NLP Insights
Task Execution Logs
Conversations History
Conversation Flows
Conversation Insights
Feedback Analytics
Usage Metrics
Containment Metrics
Universal Bots
Introduction
Universal Bot Definition
Universal Bot Creation
Training a Universal Bot
Universal Bot Customizations
Enabling Languages
Store
Manage Assistant
Team Collaboration
Plan & Usage
Overview
Usage Plans
Templates
Support Plans
Invoices
Authorization
Conversation Sessions
Multilingual Virtual Assistants
Get Started
Supported Components & Features
Manage Languages
Manage Translation Services
Multiingual Virtual Assistant Behavior
Feedback Survey
Masking PII Details
Variables
Collections
IVR Settings
General Settings
Assistant Management
Manage Namespace
Data
Overview
Data Table
Table Views
App Definitions
Data as Service
HOW TOs
Build a Travel Planning Assistant
Travel Assistant Overview
Create a Travel Virtual Assistant
Design Conversation Skills
Create an ‘Update Booking’ Task
Create a Change Flight Task
Build a Knowledge Graph
Schedule a Smart Alert
Design Digital Skills
Configure Digital Forms
Configure Digital Views
Train the Assistant
Use Traits
Use Patterns
Manage Context Switching
Deploy the Assistant
Use Bot Functions
Use Content Variables
Use Global Variables
Use Web SDK
Build a Banking Assistant
Design Conversation Skills
Create a Sample Banking Assistant
Create a Transfer Funds Task
Create a Update Balance Task
Create a Knowledge Graph
Set Up a Smart Alert
Design Digital Skills
Configure Digital Forms
Configure Digital Views
Add Data to Data Tables
Update Data in Data Tables
Add Data from Digital Forms
Train the Assistant
Composite Entities
Use Traits
Use Patterns for Intents & Entities
Manage Context Switching
Deploy the Assistant
Configure an Agent Transfer
Use Assistant Functions
Use Content Variables
Use Global Variables
Intent Scoping using Group Node
Analyze the Assistant
Create a Custom Dashboard
Use Custom Meta Tags in Filters
Migrate External Bots
Google Dialogflow Bot
APIs & SDKs
API Reference
API Introduction
Rate Limits
API List
koreUtil Libraries
SDK Reference
SDK Introduction
SDK Security
SDK Registration
Web Socket Connect and RTM
Installing the BotKit SDK
Using the BotKit SDK
SDK Events
SDK Functions
SDK Tutorials
BotKit - Blue Prism
BotKit - Flight Search Sample VA
BotKit - Agent Transfer
Widget SDK Tutorial
Web SDK Tutorial
ADMINISTRATION
Introduction to Admin Console
Administration Dashboard
User Management
Add Users
Manage Groups
Manage Roles
Data Tables and Views
Assistant Management
Enrollment
Invite Users
Send Bulk Invites
Import User Data
Synchronize Users from AD
Security & Control
Using Single-Sign On (SSO)
Two-Factor Authentication (2FA)
Security Settings
Cloud Connector
Analytics
Billing
  1. Home
  2. Docs
  3. Virtual Assistants
  4. Builder
  5. Knowledge Graph
  6. Generation of Knowledge Graph

Generation of Knowledge Graph

The performance of the  Knowledge Graph is based on proper organization based upon key domain terms, and on establishing a hierarchy.

Building the FAQs is easy when you start fresh with the Knowledge Graph, but in case you have a list of questions-answer pairs, converting it into a fully functional Knowledge Graph is a tedious task.

Kore.ai’s XO Platform provides a Knowledge Graph Generator that automatically extracts terms from FAQs, defines the hierarchy between these terms, and also associates the FAQs to the right terms. You can then import the output file from the generator to your VA’s Knowledge Graph without having to worry about the hierarchy. You can also edit the hierarchy after import to suit your needs. It is highly recommended to review and make changes as the Knowledge Graph generated is only a suggestion.

Note: The Knowledge Graph Generator is available from v7.1 of the platform.

The Kore.ai Knowledge Graph Generator is hosted on the Kore GitHub repository. This document provides the steps needed to install and use the generator.

Prerequisites

  • Python 3.6: The Knowledge Graph Generator requires python v3.6. You can download it here.
  • Virtual Environment: It is advised to use a virtual environment, instead of installing requirements in the system directly. Follow the steps mentioned here to set up a virtual environment.
  • For Windows Developers:
    • Microsoft Visual C++ Build Tools – tested with v14.0.
    • Windows 10 users must install Windows 10 SDK. You can download it here.
    • The operating system must be up to date for a seamless installation of requirements. Some libraries like SpiCy (internal dependency) need specific DLLs that are available in the latest updates.
  • A file containing the FAQs in JSON or CSV format. You can obtain this file in two ways:
    • Export the Knowledge Graph from Kore.ai XO Platform, see here for how.
    • Build the Knowledge Graph in a tabular form with questions in the first column and answers in the corresponding second column and save the file in CSV format.

Configuration

  1. Download the Knowledge Graph Generator from Kore.ai GitHub: https://github.com/Koredotcom/KnowledgeGraphGenerator.
  2. Extract the zip file into a folder and open the command prompt from that generator folder.
  3. Activate the virtual environment: Execute the following command replacing the placeholders with actual values to activate the virtual environment:
    • For Windows:
      <virtual_environments_folder_location>/<virtualenv_name>/Scripts/activate
    • For Unix/macOS:
      <virtual_environments_folder_location>/<virtualenv_name>/bin/activate.

    Once the virtual environment is activated, you can see the virtual environment name at the start of every command in the console.

  4. Install the requirements: Run the following command from your project root directory (KnowledgeGraphGenerator) in the virtual environment to install the requirements
    pip install -r requirements.txt
    You can verify the installation by running the following command and ensuring that the list contains all the components mentioned in the requirement.txt file.
    pip list
  5. Download spacy English model: Run the following command to download spaCy, the NLP model.
    python -m spacy download en

Execution

Now that you have the prerequisites and have configured the Knowledge Graph Generator, let us see how to generate the Knowledge Graph.

The following command executes the generator:

python KnowledgeGraphGenerator.py --file_path <INPUT_FILE_PATH> --type <INPUT_FILE_TYPE> --language <LANGUAGE_CODE> --v <true/false>

Let us look at each of the options:

Option Description Mandatory/Optional Default Value
Input File Path Input file name along with the location Mandatory
Input File Type The type of input file:

  • json_export – for files exported from Kore.ai Bot Builder using JSON Export option
  • csv_export – for files exported from Kore.ai Bot Builder using CSV Export option
  • CSV – for files with questions in the first column and answers in the respective second column
Mandatory
Language Code The language code for the language in which input data exist Optional en (English)
Verbose Mode Running a command in verbose mode to see intermediate progress steps Optional false

Output

The output JSON file is generated and placed under the project root directory with the name ao_output.json

The output JSON file can directly be imported to Knowledge Graph in the bot. See here for steps to import Knowledge Graph.

Note: When you try to import the Knowledge Graph it replaces the existing one. We recommend you take a back up before importing.

Generation of Knowledge Graph

The performance of the  Knowledge Graph is based on proper organization based upon key domain terms, and on establishing a hierarchy.

Building the FAQs is easy when you start fresh with the Knowledge Graph, but in case you have a list of questions-answer pairs, converting it into a fully functional Knowledge Graph is a tedious task.

Kore.ai’s XO Platform provides a Knowledge Graph Generator that automatically extracts terms from FAQs, defines the hierarchy between these terms, and also associates the FAQs to the right terms. You can then import the output file from the generator to your VA’s Knowledge Graph without having to worry about the hierarchy. You can also edit the hierarchy after import to suit your needs. It is highly recommended to review and make changes as the Knowledge Graph generated is only a suggestion.

Note: The Knowledge Graph Generator is available from v7.1 of the platform.

The Kore.ai Knowledge Graph Generator is hosted on the Kore GitHub repository. This document provides the steps needed to install and use the generator.

Prerequisites

  • Python 3.6: The Knowledge Graph Generator requires python v3.6. You can download it here.
  • Virtual Environment: It is advised to use a virtual environment, instead of installing requirements in the system directly. Follow the steps mentioned here to set up a virtual environment.
  • For Windows Developers:
    • Microsoft Visual C++ Build Tools – tested with v14.0.
    • Windows 10 users must install Windows 10 SDK. You can download it here.
    • The operating system must be up to date for a seamless installation of requirements. Some libraries like SpiCy (internal dependency) need specific DLLs that are available in the latest updates.
  • A file containing the FAQs in JSON or CSV format. You can obtain this file in two ways:
    • Export the Knowledge Graph from Kore.ai XO Platform, see here for how.
    • Build the Knowledge Graph in a tabular form with questions in the first column and answers in the corresponding second column and save the file in CSV format.

Configuration

  1. Download the Knowledge Graph Generator from Kore.ai GitHub: https://github.com/Koredotcom/KnowledgeGraphGenerator.
  2. Extract the zip file into a folder and open the command prompt from that generator folder.
  3. Activate the virtual environment: Execute the following command replacing the placeholders with actual values to activate the virtual environment:
    • For Windows:
      <virtual_environments_folder_location>/<virtualenv_name>/Scripts/activate
    • For Unix/macOS:
      <virtual_environments_folder_location>/<virtualenv_name>/bin/activate.

    Once the virtual environment is activated, you can see the virtual environment name at the start of every command in the console.

  4. Install the requirements: Run the following command from your project root directory (KnowledgeGraphGenerator) in the virtual environment to install the requirements
    pip install -r requirements.txt
    You can verify the installation by running the following command and ensuring that the list contains all the components mentioned in the requirement.txt file.
    pip list
  5. Download spacy English model: Run the following command to download spaCy, the NLP model.
    python -m spacy download en

Execution

Now that you have the prerequisites and have configured the Knowledge Graph Generator, let us see how to generate the Knowledge Graph.

The following command executes the generator:

python KnowledgeGraphGenerator.py --file_path <INPUT_FILE_PATH> --type <INPUT_FILE_TYPE> --language <LANGUAGE_CODE> --v <true/false>

Let us look at each of the options:

Option Description Mandatory/Optional Default Value
Input File Path Input file name along with the location Mandatory
Input File Type The type of input file:

  • json_export – for files exported from Kore.ai Bot Builder using JSON Export option
  • csv_export – for files exported from Kore.ai Bot Builder using CSV Export option
  • CSV – for files with questions in the first column and answers in the respective second column
Mandatory
Language Code The language code for the language in which input data exist Optional en (English)
Verbose Mode Running a command in verbose mode to see intermediate progress steps Optional false

Output

The output JSON file is generated and placed under the project root directory with the name ao_output.json

The output JSON file can directly be imported to Knowledge Graph in the bot. See here for steps to import Knowledge Graph.

Note: When you try to import the Knowledge Graph it replaces the existing one. We recommend you take a back up before importing.
Menu