はじめに
対話型AIプラットフォーム
チャットボットの概要
自然言語処理(NLP)
ボットの概念と用語
クイックスタートガイド
プラットフォームへのアクセス
ボットビルダーの操作
リリースノート
最新バージョン(英語)
以前のバージョン(英語)
廃止機能(英語)
コンセプト
設計
ストーリーボード
ダイアログタスク
ダイアログタスクとは
ダイアログビルダー
ノードタイプ
インテントノード
ダイアログノード
エンティティノード
フォームノード
確認ノード
ロジックノード
ボットアクションノード
サービスノード
Webhookノード
スクリプトノード
グループノード
エージェント転送ノード
ユーザープロンプト
音声通話プロパティ
イベント ハンドラー
ナレッジグラフ
ナレッジグラフの抽出
ナレッジグラフの構築
ボットにナレッジグラフを追加
グラフの作成
ナレッジグラフの構築
既存のソースからFAQを構築
特性、同義語、停止用語
変数ネームスペースの管理
更新
ノード間の質問と回答の移動
用語の編集と削除
質問と応答の編集
ナレッジグラフの分析
通知タスク
スモールトーク
デジタルスキル
デジタルフォーム
デジタルビュー
デジタルビューとは
パネル
ウィジェット
トレーニング
トレーニングとは
機械学習
機械学習とは
モデル検証
ファンダメンタルミーニング
ナレッジグラフ
示唆
ランキングおよび解決
NLPの詳細設定
NLPのガイドライン
インテリジェンス
インテリジェンスとは
コンテキスト
コンテキストインテント
割り込み
複数インテントの検出
エンティティの変更
デフォルトの会話
センチメント管理
トーン分析
テストとデバッグ
ボットと会話
発話テスト
バッチテスト
会話テスト
デプロイ
チャネル
公開
分析
ボットの分析
NLPメトリクス
会話フロー
Usage Metrics
封じ込め測定
カスタムダッシュボード
カスタムダッシュボードとは
メタタグ
カスタムダッシュボードとウィジェット
ユニバーサルボット
ユニバーサルボットとは
ユニバーサルボットの定義
ユニバーサルボットの作成
ユニバーサルボットのトレーニング
ユニバーサルボットのカスタマイズ
他言語の有効化
ストア
プラントと使用
Overview
Usage Plans
Support Plans
Invoices
管理
ボット認証
複数言語対応ボット
個人を特定できる情報の編集
ボット変数の使用
IVRのシステム連携
一般設定
ボット管理
ハウツー
会話スキルの設計
バンキングボットを作成
バンキングボット – 資金の振り替え
バンキングボット – 残高を更新
ナレッジグラフを構築
スマートアラートの予約方法
デジタルスキルの設計
デジタルフォームの設定方法
デジタルビューの設定方法
データテーブルのデータの追加方法
データテーブルのデータの更新方法
Add Data from Digital Forms
ボットのトレーニング
示唆の使用方法
インテントとエンティティのパターンの使用方法
コンテキスト切り替えの管理方法
ボットのデプロイ
エージェント転送の設定方法
ボット関数の使用方法
コンテンツ変数の使用方法
グローバル変数の使用方法
Web SDK Tutorial(英語)
Widget SDK Tutorial(英語)
ボットの分析
カスタムダッシュボードの作成方法
カスタムタグを使ってフィルタリング
管理
ボット管理者コンソール
ダッシュボード
ユーザーの管理
ユーザーの管理
グループの管理
ロール管理
ボット管理モジュール
登録
ユーザーの招待
招待状の一括送信
ユーザーデータのインポート
Active Directoryからユーザーを同期
セキュリティ/コンプライアンス
シングル サインオンの使用
セキュリティ設定
Billing(日本未対応)
  1. ホーム
  2. Docs
  3. Virtual Assistants
  4. Overview
  5. ボットの概念と用語

ボットの概念と用語

このセクションでは、Kore.aiボットプラットフォームに関する主要な用語と概念について説明します。

ボット

ボットとは、人やデジタルシステム、インターネット対応製品との間でインテリジェントな仲介役を務めるバーチャルアシスタントの一つの形態を指します。ボットは機械学習、自然言語処理、およびその他の形態の高度なソフトウェアを備えたインテリジェントなものであり、人間の複雑な会話を処理したり、過去のやり取りから学習したり、時間の経過とともに応答を改善したりすることができます。

発話

ユーザーがチャットボットに話すことはすべて発話になります。たとえば、ユーザーが“次の日曜日にオーランドへのフライトを予約してください”と入力した場合、文全体がユーザーの発話とみなされます。

インテント

ユーザーがチャットボットに何をしてほしいかを説明する発話には、いくつかの重要な単語があります。これらは通常、動詞と名詞の組み合わせです。たとえば上記のユーザーの発話である“次の日曜日にオーランドへのフライトを予約してください”を例にとると、そのインテントは“フライトを予約してください”です。

エンティティ

ユーザーのインテントを満たすために、ボットが追加の情報またはパラメーターを必要とする場合があります。たとえばフライトを予約するには、出発地と目的地の都市、および旅行日が必要です。たとえば、上記のユーザーの発話である“次の日曜日にオーランドへのフライトを予約してください”では、“オーランド”と“次の日曜日”がエンティティです。

エンティティは、チャットボットにとってユーザーのリクエストを完了するために必要なフィールド、データ、または単語です。必要なエンティティが手元にあれば、ボットプラットフォームはWebサービスにアクセスして特定のデータを取得したり、ユーザーのインテントに従ってアクションを実行したりできます。

パラメーターとユーザー入力の詳細については、「ボットタスクの定義」の特定のタスクタイプのパラメーターとフィールドを参照してください。

サンプル発話 インテント エンティティ
オーランドへのフライトを予約してください フライトを予約する 都市:オーランド
今週の日曜日にビルとのミーティングを予約する ミーティングを予約する 氏名:Bill
日付:2018年4月22日
カートに赤ワインを2本追加します カートに追加 アイテム:赤ワインの本数:2本

自然言語処理

ボットがユーザーインテントを識別し、ユーザーの発話から有用な情報を抽出し、そのデータ(エンティティ)を関連するタスクにマッピングするプロセスを指します。これにより、ボットは複雑なメニューやプログラミング言語ではなく、テキスト形式で要求を処理することができます。

Kore.aiのプラットフォームは独自のNLP戦略を採用しています。ファンダメンタルミーニングと機械学習エンジンを組み合わせ、最適な会話精度を実現します。Kore.aiのプラットフォーム上に構築されたBotは、以下のことを理解して処理することができます。

  • 複数センテンスのメッセージ
  • 複数のインテント
  • コンテキストに沿った参照
  • パターンや慣用句など

人工知能

人間の行動と意思決定をシミュレートして、音声認識と理解、言語翻訳など、通常は人間の知性でなければできないようなタスクを実行する機械の能力。

機械学習

明示的にプログラムされていなくても、アルゴリズム、パターン、トレーニングデータを使用して学習し、隠れたインサイトを発見する機械の能力。

エンティティ抽出

タスクを完了させるために有用で価値のあるデータの、ユーザーの発話からの抽出。ボットは、ユーザータスクを完了するためのすべてのデータを確実に取得し、取得できない場合は、不足している情報の入力をユーザーに求めることができます。

ボットタスク

タスクは、開発者によってチャットボットに組み込まれたさまざまなタイプの単純なジョブと複雑なジョブを指します。これらのタスクは、ユーザーのインテントを実現するためにチャットボットによって実行されます。

旅行ボットの場合、チケットの予約、ホテルの検索、天気予報の提供など、さまざまなユーザーのインテントに応えるようなものがタスク名になります。

ボットがユーザーのインテントを理解すると、Webサービスへのアクセス、現在の気象状況レポートの抽出、その応答の解析、ユーザーへのデータ配信などのタスクを実行する準備が整います。

Kore.aiは、事実上すべてのボットシナリオをカバーする5つの事前定義済みのタスクタイプを提供します。

アクションタスク

ボットは、予定のスケジューリング、製品の検索、重要な情報の更新など、記録システムで情報を収集、変更、および投稿できます。

アラートタスク

ボットは、バックエンドシステムとポーリングするか、定期的に情報を取得することにより、タイムリーで関連性のあるパーソナライズされた通知を、企業システムから直接顧客や従業員に配信できます。ユーザーまたはボット開発者はアラートを設定できます。

ナレッジグラフ

ボットは、事前定義された一連の情報をもとに、ユーザーからのよくある質問への回答を提供できます。たとえばボットは、営業時間に関する顧客の質問に答えると同時に、返品ポリシーに関する質問にも答えることができます。

情報タスク

ボットは、バックエンドシステムからのデータをレポート形式でユーザーに提供できます。レポートはユーザー設定、適用可能なフィルターに基づいてフォーマットおよび編成されており、ダウンロードして後で使用できます。たとえばボットは、昨年の売上上位10人の営業担当者の詳細レポートを、売上高の多いものから順に提供できます。

ダイアログタスク

ボットは、人々が毎日行う自然なやり取りに似た複雑なマルチターンの会話体験を処理できます。

学習

学習とは、チャットボットが新しいインテントとエンティティを認識し、質問に正しく答え、ユーザーの発話の重要な側面を特定する方法に関するものです。学習は手動でも自動でも実施することができます。そして、ヒトと同じように、ボットも自分が間違っているとき、正しい行動や応答、回答が何であるべきかを知る必要があります。

教師あり学習

入力変数(X)と出力変数(Y)があり、アルゴリズムを使用して入力から出力へのマッピング関数を学ばせる手法。ここでは、ボット開発者が教師として役割を果たし、ボットが学習する内容を実質的に完全に制御します。そうすることで、アルゴリズムは提供されたトレーニングデータに基づいて予測を行うようになります。ボット作成者である開発者は、予測に正解または不正解のフラグを立てることにより、それぞれを手動で修正できます。ボットの開発者はボットが何を理解すべきかをすでに知っているので、開発者が判断すればすぐに、またはモデルが許容可能なレベルのパフォーマンスに達したときに学習を終了できます。

教師なし学習

ボット開発者の監督を必要としない学習形式。ここでは、ボットは成功したすべての発話、つまりボットによって正常に認識された発話と完了したタスクから学習します。これらの学習内容を使用してモデルを自動的に拡張し、競合が発生した場合には、ユーザーが提供するインテントの確認を含めてボットを再トレーニングします。このような形式のトレーニングにより、ボットは言語能力を拡張し、失敗した発話を排除するとともに人間の介入なしに精度を向上させることができます。

メッセージングチャネル

チャネルとは、SMS、メール、モバイルアプリ、Webサイト、メッセージングアプリなど、ボットが存在できるさまざまな通信プラットフォームを指します。ボットビルダーを使用すると、チャットボットタスクを一度設計すれば、チェックボックスをオンにするだけでチャネル全体にデプロイできます。また、メッセージレスポンスを変更したり、日付セレクターやカルーセルなどのチャネル専用のUI要素を活用したりすることで、クロスチャネルエクスペリエンスを差別化することもできます。

変数、コンテキスト、およびセッションデータ

開発者がタスクを作成および定義するときには、以下にアクセスできます。

  • ボットプラットフォームによって提供されるセッション変数。
  • それらが定義するカスタム変数。
  • 変数のスコープを定義するコンテキスト。

たとえば、一部のAPIリクエストでは、タスクを実行する前にセッション変数を設定する必要があります。または、次のノードに遷移するためにダイアログタスクコンポーネントがセッション変数にアクセスする必要があります。ダイアログタスクは、追加のシステム変数を使用してコンテキストオブジェクトにアクセスすることもできます。これらのセッション変数とコンテキスト変数を使用すると、データを保持・保存できます。たとえば、商取引、輸送、および宅配サービスのためのユーザーの自宅住所は、タスクを実行するときにボットが使用します。

ボットプラットフォームは、JavaScriptを使用してセクションでタスクを定義するときに使用するセッション変数に対応しています。セッション変数は、それらが使用されるコンテキストまたはスコープに依存します。たとえば、エンタープライズレベル、ボットレベル、ユーザーレベル、セッションレベルなどです。

ボットの概念と用語

このセクションでは、Kore.aiボットプラットフォームに関する主要な用語と概念について説明します。

ボット

ボットとは、人やデジタルシステム、インターネット対応製品との間でインテリジェントな仲介役を務めるバーチャルアシスタントの一つの形態を指します。ボットは機械学習、自然言語処理、およびその他の形態の高度なソフトウェアを備えたインテリジェントなものであり、人間の複雑な会話を処理したり、過去のやり取りから学習したり、時間の経過とともに応答を改善したりすることができます。

発話

ユーザーがチャットボットに話すことはすべて発話になります。たとえば、ユーザーが“次の日曜日にオーランドへのフライトを予約してください”と入力した場合、文全体がユーザーの発話とみなされます。

インテント

ユーザーがチャットボットに何をしてほしいかを説明する発話には、いくつかの重要な単語があります。これらは通常、動詞と名詞の組み合わせです。たとえば上記のユーザーの発話である“次の日曜日にオーランドへのフライトを予約してください”を例にとると、そのインテントは“フライトを予約してください”です。

エンティティ

ユーザーのインテントを満たすために、ボットが追加の情報またはパラメーターを必要とする場合があります。たとえばフライトを予約するには、出発地と目的地の都市、および旅行日が必要です。たとえば、上記のユーザーの発話である“次の日曜日にオーランドへのフライトを予約してください”では、“オーランド”と“次の日曜日”がエンティティです。

エンティティは、チャットボットにとってユーザーのリクエストを完了するために必要なフィールド、データ、または単語です。必要なエンティティが手元にあれば、ボットプラットフォームはWebサービスにアクセスして特定のデータを取得したり、ユーザーのインテントに従ってアクションを実行したりできます。

パラメーターとユーザー入力の詳細については、「ボットタスクの定義」の特定のタスクタイプのパラメーターとフィールドを参照してください。

サンプル発話 インテント エンティティ
オーランドへのフライトを予約してください フライトを予約する 都市:オーランド
今週の日曜日にビルとのミーティングを予約する ミーティングを予約する 氏名:Bill
日付:2018年4月22日
カートに赤ワインを2本追加します カートに追加 アイテム:赤ワインの本数:2本

自然言語処理

ボットがユーザーインテントを識別し、ユーザーの発話から有用な情報を抽出し、そのデータ(エンティティ)を関連するタスクにマッピングするプロセスを指します。これにより、ボットは複雑なメニューやプログラミング言語ではなく、テキスト形式で要求を処理することができます。

Kore.aiのプラットフォームは独自のNLP戦略を採用しています。ファンダメンタルミーニングと機械学習エンジンを組み合わせ、最適な会話精度を実現します。Kore.aiのプラットフォーム上に構築されたBotは、以下のことを理解して処理することができます。

  • 複数センテンスのメッセージ
  • 複数のインテント
  • コンテキストに沿った参照
  • パターンや慣用句など

人工知能

人間の行動と意思決定をシミュレートして、音声認識と理解、言語翻訳など、通常は人間の知性でなければできないようなタスクを実行する機械の能力。

機械学習

明示的にプログラムされていなくても、アルゴリズム、パターン、トレーニングデータを使用して学習し、隠れたインサイトを発見する機械の能力。

エンティティ抽出

タスクを完了させるために有用で価値のあるデータの、ユーザーの発話からの抽出。ボットは、ユーザータスクを完了するためのすべてのデータを確実に取得し、取得できない場合は、不足している情報の入力をユーザーに求めることができます。

ボットタスク

タスクは、開発者によってチャットボットに組み込まれたさまざまなタイプの単純なジョブと複雑なジョブを指します。これらのタスクは、ユーザーのインテントを実現するためにチャットボットによって実行されます。

旅行ボットの場合、チケットの予約、ホテルの検索、天気予報の提供など、さまざまなユーザーのインテントに応えるようなものがタスク名になります。

ボットがユーザーのインテントを理解すると、Webサービスへのアクセス、現在の気象状況レポートの抽出、その応答の解析、ユーザーへのデータ配信などのタスクを実行する準備が整います。

Kore.aiは、事実上すべてのボットシナリオをカバーする5つの事前定義済みのタスクタイプを提供します。

アクションタスク

ボットは、予定のスケジューリング、製品の検索、重要な情報の更新など、記録システムで情報を収集、変更、および投稿できます。

アラートタスク

ボットは、バックエンドシステムとポーリングするか、定期的に情報を取得することにより、タイムリーで関連性のあるパーソナライズされた通知を、企業システムから直接顧客や従業員に配信できます。ユーザーまたはボット開発者はアラートを設定できます。

ナレッジグラフ

ボットは、事前定義された一連の情報をもとに、ユーザーからのよくある質問への回答を提供できます。たとえばボットは、営業時間に関する顧客の質問に答えると同時に、返品ポリシーに関する質問にも答えることができます。

情報タスク

ボットは、バックエンドシステムからのデータをレポート形式でユーザーに提供できます。レポートはユーザー設定、適用可能なフィルターに基づいてフォーマットおよび編成されており、ダウンロードして後で使用できます。たとえばボットは、昨年の売上上位10人の営業担当者の詳細レポートを、売上高の多いものから順に提供できます。

ダイアログタスク

ボットは、人々が毎日行う自然なやり取りに似た複雑なマルチターンの会話体験を処理できます。

学習

学習とは、チャットボットが新しいインテントとエンティティを認識し、質問に正しく答え、ユーザーの発話の重要な側面を特定する方法に関するものです。学習は手動でも自動でも実施することができます。そして、ヒトと同じように、ボットも自分が間違っているとき、正しい行動や応答、回答が何であるべきかを知る必要があります。

教師あり学習

入力変数(X)と出力変数(Y)があり、アルゴリズムを使用して入力から出力へのマッピング関数を学ばせる手法。ここでは、ボット開発者が教師として役割を果たし、ボットが学習する内容を実質的に完全に制御します。そうすることで、アルゴリズムは提供されたトレーニングデータに基づいて予測を行うようになります。ボット作成者である開発者は、予測に正解または不正解のフラグを立てることにより、それぞれを手動で修正できます。ボットの開発者はボットが何を理解すべきかをすでに知っているので、開発者が判断すればすぐに、またはモデルが許容可能なレベルのパフォーマンスに達したときに学習を終了できます。

教師なし学習

ボット開発者の監督を必要としない学習形式。ここでは、ボットは成功したすべての発話、つまりボットによって正常に認識された発話と完了したタスクから学習します。これらの学習内容を使用してモデルを自動的に拡張し、競合が発生した場合には、ユーザーが提供するインテントの確認を含めてボットを再トレーニングします。このような形式のトレーニングにより、ボットは言語能力を拡張し、失敗した発話を排除するとともに人間の介入なしに精度を向上させることができます。

メッセージングチャネル

チャネルとは、SMS、メール、モバイルアプリ、Webサイト、メッセージングアプリなど、ボットが存在できるさまざまな通信プラットフォームを指します。ボットビルダーを使用すると、チャットボットタスクを一度設計すれば、チェックボックスをオンにするだけでチャネル全体にデプロイできます。また、メッセージレスポンスを変更したり、日付セレクターやカルーセルなどのチャネル専用のUI要素を活用したりすることで、クロスチャネルエクスペリエンスを差別化することもできます。

変数、コンテキスト、およびセッションデータ

開発者がタスクを作成および定義するときには、以下にアクセスできます。

  • ボットプラットフォームによって提供されるセッション変数。
  • それらが定義するカスタム変数。
  • 変数のスコープを定義するコンテキスト。

たとえば、一部のAPIリクエストでは、タスクを実行する前にセッション変数を設定する必要があります。または、次のノードに遷移するためにダイアログタスクコンポーネントがセッション変数にアクセスする必要があります。ダイアログタスクは、追加のシステム変数を使用してコンテキストオブジェクトにアクセスすることもできます。これらのセッション変数とコンテキスト変数を使用すると、データを保持・保存できます。たとえば、商取引、輸送、および宅配サービスのためのユーザーの自宅住所は、タスクを実行するときにボットが使用します。

ボットプラットフォームは、JavaScriptを使用してセクションでタスクを定義するときに使用するセッション変数に対応しています。セッション変数は、それらが使用されるコンテキストまたはスコープに依存します。たとえば、エンタープライズレベル、ボットレベル、ユーザーレベル、セッションレベルなどです。

メニュー