시작
Kore.ai 대화형 플랫폼
챗봇 개요
자연어 처리(NLP)
봇 개념 및 용어들
빠른 시작 가이드
봇 빌더 접근 방법
사용 고지 사항 (영어)
Kore.ai 봇 빌더로 작업하기
봇 구축 시작하기
릴리스 정보
현재 버전 (영어)
이전 버전 (영어)

개념
디자인
스토리보드
대화 작업
개요
Using the Dialog Builder Tool
노드 유형
사용자 의도 노드
대화 노드
엔티티 노드
양식 노드
확인 노드
서비스 노드
봇 조치 노드
Service Node
WebHook 노드
스크립트 노드
노드 그룹화하기
Agent Transfer Node
사용자 프롬프트
음성 통화 속성
대화 관리
노드 및 전환
구성 요소 전환
컨텍스트 개체
이벤트 기반 봇 조치
지식 그래프
소개
지식 추출
지식 그래프 생성
봇에 지식 그래프 추가
그래프 생성
지식 그래프 작성
FAQ 추가
작업 실행
기존 소스에서 FAQ 구축
특성, 동의어 및 불용어
변수 네임스페이스 관리
수정
용어 편집 및 삭제
용어 편집 및 삭제
질문과 응답 편집
Knowledge Graph Training
지식 그래프 분석
봇 온톨로지 가져오기 및 내보내기
지식 그래프 가져오기
지식 그래프 내보내기
지식 그래프 생성
CSV 파일에서
JSON 파일
지식 그래프 생성
경고 작업
스몰 토크
Digital Skills
디지털 양식
Views
Digital Views
Panels
Widgets
기차
봇 성능 향상 – NLP 최적화
기계 학습
소개
모델 검증
기초 의미
지식 그래프 학습
특성
순위 및 해결
고급 NLP 설정
NLP 설정 및 지침
봇 인텔리전스
소개
컨텍스트 관리
컨텍스트 관리
대화 관리
다중 – 의도 탐지
엔티티 수정
기본 대화
정서 관리
어조 분석
Test & Debug
봇과 대화
발화 테스트
배치 테스트하기
대화 테스트
배포
채널 활성화
봇 게시
분석
봇 분석하기
Conversations Dashboard
Performance Dashboard
사용자 정의 대시보드
소개
맞춤형 메타 태그
사용자 정의 대시보드 생성 방법
Conversation Flows
NLP 지표
Containment Metrics
사용량 지표
스마트 봇
소개
범용 봇
소개
범용 봇 정의
범용 봇 생성
범용 봇 학습
범용 봇 커스터마이징
범용 봇용 추가 언어 활성화
스토어
Manage Assistant
플랜 및 사용량
Overview
Usage Plans
Support Plans
플랜 관리
봇 인증
다국어 봇
개인 식별 정보 삭제하기
봇 변수 사용
IVR 통합
일반 설정
봇 관리

방법
간단한 봇 생성하기
Design Conversation Skills
뱅킹 봇 생성
뱅킹 봇 – 자금 이체
뱅킹 봇 – 잔액 업데이트
Knowledge Graph (KG) 구축
스마트 경고를 예약하는 방법
Design Digital Skills
디지털 양식 설정 방법
디지털 보기 설정 방법
데이터 테이블에 데이터를 추가하는 방법
데이터 테이블 내 데이터 업데이트 방법
UI 양식에서 데이터 테이블에 데이터를 추가하는 방법
Train the Assistant
특성 사용 방법
의도와 엔티티에 대한 패턴 사용 방법
컨텍스트 전환 관리 방법
Deploy the Assistant
상담사 전환을 설정하는 방법
봇 기능 사용 방법
콘텐츠 변수 사용 방법
전역 변수 사용 방법
Kore.ai 웹 SDK 튜토리얼
Kore.ai 위젯 SDK 튜토리얼
Analyze the Assistant
사용자 정의 대시보드 생성 방법
사용자 지정 태그를 사용하여 봇 메트릭을 필터링하는 방법

API 및 SDK
API 참조
Kore.ai API 사용
API 목록
API 컬렉션
koreUtil Libraries
SDK 참조
상담사 전환을 설정하는 방법
봇 기능 사용 방법
콘텐츠 변수 사용 방법
전역 변수 사용 방법
소개
Kore.ai 웹 SDK 튜토리얼
Kore.ai 위젯 SDK 튜토리얼

관리
소개
봇 관리자 콘솔
대시보드
사용자 관리
사용자 관리
그룹 관리
역할 관리
봇 관리 모듈
등록
사용자 초대
사용자 등록을 위한 대량 초대 보내기
사용자 및 사용자 데이터 가져오기
Active Directory에서 사용자 동기화
보안 및 준수
싱글 사인 온 사용
보안 설정
Kore.ai 커넥터
봇 관리자용 분석
Billing (지원하지 않음)
  1. Docs
  2. Virtual Assistants
  3. Natural Language
  4. LLM and Generative AI

LLM and Generative AI

The Kore.ai XO Platform helps enhance your bot development process and enrich end-user conversational experiences by integrating pre-trained OpenAI or Azure OpenAI language models in the backend. With the advancement of LLM and Generative AI technologies, this integration with OpenAI adds new capabilities to your Virtual Assistant through auto-generated suggestions. This capability can automate dialog flows creation, user utterance testing and validation, and conversation design based on context-specific and human-like interactions.

You can find LLM and Generative AI features by going to Build > Natural Language > Advanced NLU Settings.

Key Features

The Integration of LLM and Generative AI enables the following features: 

  • Automatic Dialog Generation: This feature helps build production-ready dialog tasks automatically by briefly describing the task. A preview of the generated dialog is available and lets you modify the intent description and create multiple iterations of the dialog.
  • Training Data Suggestions: The platform suggests high-quality training utterances, including NER annotations for each intent. You can review and add suggestions to create an efficient training set.
  • NLP Batch Test Cases Suggestion: The Platform generates NLP test cases for every intent, including entity checks. You only need to create test suites in the Builder using the generated testing utterances.
  • Conversation Test Cases Suggestion: The Platform suggests simulated user inputs covering various scenarios from an end-user perspective at every test step. You can use these suggestions to create test suites. 
  • Dynamic Prompt and Message Rephrasing: Enhance end-user experience with empathetic and contextual bot responses. This feature uses Generative AI to rephrase bot responses based on user emotions and conversation context.

Benefits

All these features benefit VA developers, NLP developers, and testers as follows:

  • Mundane tasks like generating dialog tasks or training utterances are automated to help developers be more productive and focus on other important tasks like enhancing conversation design, creating complex test cases, and more.
  • Testers can ensure that their intent descriptions are meaningful in the right context to generate the right content.
  • Developers can create dialog tasks on-the-fly through the prebuilt Dialog Tasks Flow.
  • The Platform provides suggestions and nudges developers in the right direction for the better design and development of Virtual Assistants. For example, it offers curated use case suggestions while creating the VA, including probable user inputs (simulating end-user behavior) in Conversation Testing. This way, the VA can simulate the end user’s behavior at every conversation step and respond more realistically by considering error scenarios, digressions, and contextual changes.

Important Considerations

This feature is only available if the VA’s NLU language is English and requires sharing data with third parties: OpenAI (when using the OpenAI integration) or OpenAI and Microsoft (when using the Azure integration).

Configure LLM and Generative AI

The following steps are necessary to configure LLM and Generative AI:

  1. Prerequisites
  2. Integration Setup
  3. Enable LLM Features

Prerequisites

To enable the LLM & Generative AI features, you must meet the following prerequisites:

  1. Upgrade to NLP Version – v3 (click Upgrade when prompted within the Advanced NLU Settings section).
  2. Select English as the NLP Language under Configurations > Languages.

Integration Setup

LLM and Generative AI features are available by integrating with OpenAI directly or via Microsoft Azure.

To set up an integration, follow these steps:

  1. Click OpenAI or Azure under Advanced NLU Settings > LLM & Generative AI > Integration Setup.
  2. Configure the OpenAI connector or the Azure OpenAI connector.
  3. Once configured the status of your chosen integration changes from Configure Now to Configured.

We recommend the Azure integration because the Azure OpenAI Service is more reliable and provides REST API access to OpenAI’s language models.

Enable LLM Features

The list of available LLM features is disabled by default within the Advanced NLU section. Once you configure an integration, you can enable this list. Set the toggle under Feature List to the Enabled state to do so.

Next, please read and agree to the Terms and Conditions. Select the checkbox – I agree to the above terms and conditions, then click Enable.

Once the features list is enabled, you can select or deselect desired features.

LLM and Generative AI Features Specifications

Automatic Dialog Task Generation

This feature auto-generates conversations and dialog flows using the VA’s purpose and intent description provided during the creation process. The Platform uses LLM and generative AI to create suitable Dialog Tasks for Conversation Design, Logic Building & Training by including the required nodes in the flow. 

You must provide an intent description, and the Platform handles the Conversation Generation for the Dialog Flow.

You can preview the conversation flow, view the Bot Action taken, improvise the intent description, and regenerate the conversation to make it more human-like.

The nodes and the flow for the Business Logic are automatically built for your conversation, and you only need to configure the flow transition.

The Platform auto-defines the Entities, Prompts, Error Prompts, Bot Action nodes, Service Tasks, Request Definition, Connection Rules, and other parameters.

Usage

Once you enable this feature:

  1. The Platform triggers the flow when you launch a task for the first time.
  2. The Platform presents the intent description and an option to generate conversation.
  3. You can preview the generated conversation, edit the description, and regenerate it.
  4. The Platform sends the updated description to Generative AI in the background to get the new conversation.
  5. Once you’re satisfied with the conversation, generate a dialog task.

If this feature is disabled, you will not have the option to auto-generate a dialog flow when first launching a Dialog Task.

Note: The Platform uses the configured API Key to authorize and generate the suggestions from OpenAI.

Learn more.

Training Data Suggestions

This feature generates a list of suggested training utterances and NER annotations for each intent description and Dialog Flow, eliminating the need for manual creation.

Usage

The Platform can generate utterances that can be used to train your VA.

Once you request to generate utterances for a given intent, the Platform provides utterance suggestions based on the following information: 

  1. Intent,
  2. Entities and Entity Types,
  3. Probable entity values,
  4. Different scenarios for training utterances based on entities, a combination of entities, structurally different utterances, etc.

You can add/delete the suggested training utterances from the list or generate more suggestions.

If this feature is disabled, you won’t see the Suggestions tab on the training page.

Learn more.

NLP Batch Test Cases Suggestion

This feature lets you generate test cases and add them to the test suite with minimum or no errors.

Usage

  1. When creating a New Test Suite, select Add Manually or Upload Test Cases File to add test cases. 
  2. Add Manually creates an empty test suite where you can generate test cases and do the following:
    1. Select a Dialog Task.
    2. Based on the intent context, the Generative AI generates test cases you can review and add to or remove from the Test Suite.
  3. When you click Generate Test Cases, the Platform sends Generative AI the following information to generate test cases:
    1. Intent,
    2. Entities,
    3. Probable entity value,
    4. Different scenarios to simulate end-user utterances,
    5. Random training utterances and test cases that are generated to avoid duplicate test cases from Generative AI.

If this feature is disabled, you will not have the option to generate test cases during batch testing.

Learn more.

Conversation Test Cases Suggestion

This feature provides a regression tool or a Playbook that creates a conversation test suite for each intent (new and old) to evaluate the impact of the change on the conversation execution.

You can view input/utterance suggestions at every conversation step simulating the various input types and scenarios. This feature helps check if the task/intent is robust enough to handle random user utterances.

This feature also helps you predict and simulate the end user’s behavior and check if the VA can execute all the defined flows by generating user responses and presenting any digressions from the specified intent.

Usage

  1. You can create a test suite by recording a live conversation with a VA by initiating the interaction or letting the VA initiate it.
  2. An icon displays to indicate the user input suggestions from Generative AI.
  3. The Platform triggers OpenAI to generate suggestions whenever user input is expected.
  4. The Platform shares the following information with OpenAI to generate suggestions
    1. Randomly picked intents from the VA (Dialog, FAQ),
    2. Conversation flow,
    3. Current Intent, if any,
    4. Current node type:
      • For an entity node, the system sends the following:
        • Entity name,
        • Entity type,
        • Sample entity values. 
      • Types of user input scenarios:
        • Entities,
        • Without entities,
        • Different entity combinations in the user input,
        • Digression to another intent,
        • Trigger error scenarios.
    5. You can regenerate suggestions if required.
    6. You can accept the suggestions shown or type custom input at every step.
    7. Create a Test Suite after stopping the recording and validating the model.

If the feature is disabled, the Platform doesn’t display the Generative AI suggestions icon and the suggestions themselves.

Learn more.

Dynamic Prompt and Message Rephrasing

This feature sends all User Prompts, Error Prompts, and Bot Responses to the Generative AI along with the conversation context, which depends on the configured number of user inputs. Responses are rephrased based on this context and user emotion, providing a more empathetic, natural, and contextual conversation experience to the end-user. 

Usage

When configuring a Message, Entity, or Confirmation node, you can enable the Rephrase Response feature (disabled by default). This lets you set the number of user inputs sent to OpenAI as context for rephrasing the response sent through the node. You can choose between 0 and 5, where 0 means that no previous input is considered, while 5 means that the previous. 5 responses are sent as context.

When this feature is disabled, the Rephrase Response section is not visible within your node’s Component Properties.

Note on Auto Training for Machine Learning and Negative Patterns Settings

The Auto Training for Machine Learning and the Negative Patterns settings on the Advanced NLU Settings module help you manage the Machine Learning and Fundamental Meaning Engines, respectively. For more information, see:

메뉴