시작
Kore.ai 대화형 플랫폼
챗봇 개요
자연어 처리(NLP)
봇 개념 및 용어들
빠른 시작 가이드
봇 빌더 접근 방법
사용 고지 사항 (영어)
Kore.ai 봇 빌더로 작업하기
봇 구축 시작하기
릴리스 정보
현재 버전 (영어)
이전 버전 (영어)

개념
디자인
스토리보드
대화 작업
개요
Using the Dialog Builder Tool
노드 유형
사용자 의도 노드
대화 노드
엔티티 노드
양식 노드
확인 노드
서비스 노드
봇 조치 노드
Service Node
WebHook 노드
스크립트 노드
노드 그룹화하기
Agent Transfer Node
사용자 프롬프트
음성 통화 속성
대화 관리
노드 및 전환
구성 요소 전환
컨텍스트 개체
이벤트 기반 봇 조치
지식 그래프
소개
지식 추출
지식 그래프 생성
봇에 지식 그래프 추가
그래프 생성
지식 그래프 작성
FAQ 추가
작업 실행
기존 소스에서 FAQ 구축
특성, 동의어 및 불용어
변수 네임스페이스 관리
수정
용어 편집 및 삭제
용어 편집 및 삭제
질문과 응답 편집
Knowledge Graph Training
지식 그래프 분석
봇 온톨로지 가져오기 및 내보내기
지식 그래프 가져오기
지식 그래프 내보내기
지식 그래프 생성
CSV 파일에서
JSON 파일
지식 그래프 생성
경고 작업
스몰 토크
Digital Skills
디지털 양식
Views
Digital Views
Panels
Widgets
기차
봇 성능 향상 – NLP 최적화
기계 학습
소개
모델 검증
기초 의미
지식 그래프 학습
특성
순위 및 해결
고급 NLP 설정
NLP 설정 및 지침
봇 인텔리전스
소개
컨텍스트 관리
컨텍스트 관리
대화 관리
다중 – 의도 탐지
엔티티 수정
기본 대화
정서 관리
어조 분석
Test & Debug
봇과 대화
발화 테스트
배치 테스트하기
대화 테스트
배포
채널 활성화
봇 게시
분석
봇 분석하기
Conversations Dashboard
Performance Dashboard
사용자 정의 대시보드
소개
맞춤형 메타 태그
사용자 정의 대시보드 생성 방법
Conversation Flows
NLP 지표
Containment Metrics
사용량 지표
스마트 봇
소개
범용 봇
소개
범용 봇 정의
범용 봇 생성
범용 봇 학습
범용 봇 커스터마이징
범용 봇용 추가 언어 활성화
스토어
Manage Assistant
플랜 및 사용량
Overview
Usage Plans
Support Plans
플랜 관리
봇 인증
다국어 봇
개인 식별 정보 삭제하기
봇 변수 사용
IVR 통합
일반 설정
봇 관리

방법
간단한 봇 생성하기
Design Conversation Skills
뱅킹 봇 생성
뱅킹 봇 – 자금 이체
뱅킹 봇 – 잔액 업데이트
Knowledge Graph (KG) 구축
스마트 경고를 예약하는 방법
Design Digital Skills
디지털 양식 설정 방법
디지털 보기 설정 방법
데이터 테이블에 데이터를 추가하는 방법
데이터 테이블 내 데이터 업데이트 방법
UI 양식에서 데이터 테이블에 데이터를 추가하는 방법
Train the Assistant
특성 사용 방법
의도와 엔티티에 대한 패턴 사용 방법
컨텍스트 전환 관리 방법
Deploy the Assistant
상담사 전환을 설정하는 방법
봇 기능 사용 방법
콘텐츠 변수 사용 방법
전역 변수 사용 방법
Kore.ai 웹 SDK 튜토리얼
Kore.ai 위젯 SDK 튜토리얼
Analyze the Assistant
사용자 정의 대시보드 생성 방법
사용자 지정 태그를 사용하여 봇 메트릭을 필터링하는 방법

API 및 SDK
API 참조
Kore.ai API 사용
API 목록
API 컬렉션
koreUtil Libraries
SDK 참조
상담사 전환을 설정하는 방법
봇 기능 사용 방법
콘텐츠 변수 사용 방법
전역 변수 사용 방법
소개
Kore.ai 웹 SDK 튜토리얼
Kore.ai 위젯 SDK 튜토리얼

관리
소개
봇 관리자 콘솔
대시보드
사용자 관리
사용자 관리
그룹 관리
역할 관리
봇 관리 모듈
등록
사용자 초대
사용자 등록을 위한 대량 초대 보내기
사용자 및 사용자 데이터 가져오기
Active Directory에서 사용자 동기화
보안 및 준수
싱글 사인 온 사용
보안 설정
Kore.ai 커넥터
봇 관리자용 분석
Billing (지원하지 않음)
  1. Docs
  2. Virtual Assistants
  3. Builder
  4. Dialog Task
  5. GenAI Prompt (BETA)

GenAI Prompt (BETA)

The GenAI Prompt lets bot developers leverage the full potential of LLM and Generative AI models to quickly build their own prompts. Developers can select a specific AI model, tweak its settings, and preview the response for the prompt. The node allows developers to creatively leverage LLMs by defining the prompt using conversation context and the response from the LLMs in defining the subsequent conversation flow.

Node Behavior

Runtime

You can work with this node like with any other node within Dialog Tasks and can invoke it within multiple tasks. During runtime, the node behaves as follows:

  1. On reaching the GenAI Prompt, the platform parses any variable used in the prompt and constructs the request using the Prompt and the Advanced Settings.
  2. An API call is made to the model with the request.
  3. The response is stored in the context object as part of the dialog context and can be used to define the transitions or any other part of the bot configuration.
  4. The platform exits from the GenAI Prompt node when a successful response is received, or the defined timeout condition is met.

Enable the Node

This node is not available by default. You can enable it for all Dialog Tasks as follows:

  • Configure the Open AI integration and enable the GenAI Prompt feature under Build > Natural Language > Advanced NLU Settings. You can also select an LLM model and its settings for the features. By default, these selections are applicable across the platform for the feature. Learn more.
Note: If you do not configure an LLM model and do not enable the GenAI Prompt feature, then the node will not be available within the Dialog Builder.

Setting up a GenAI Prompt in a dialog task involves adding the node at the appropriate location in the dialog flow and configuring various properties of the node, as explained below.

Add the Node

  1. Go to Build > Conversational Skills > Dialog Tasks and select the task to which you want to add the GenAI Prompt.
  2. Use the “+” button next to the node under which you want to add the GenAI Prompt. Then, choose GenAI Prompt, and then click New GenAI Prompt. (For more information on adding nodes, see different ways to add a node.) Alternatively, you can drag and drop the GenAI Prompt node to the required location on the canvas.
  3. The GenAI Prompt window is displayed with the Component Properties tab selected by default.

Configure the Node

Component Properties

The settings made within this section affect this node across all instances in all dialog tasks.

General Settings

In this section, you can provide Name and Display Name for the node and write your own OpenAI Prompt.

  • Prompt: A prompt allows you to define the request to be sent to the LLMs for generating a response. Some of the use cases for prompts include entity or topic extraction, rephrasing, or dynamic content generation. The prompt can have up to 2000 characters, and it can be defined using text, Context, Content, and Environment variables.
  • Preview Response: Check the preview of the OpenAI response for your prompt. When you click Preview Response, the Platform parses any variable used in the prompt and constructs OpenAI request using the Prompt and the Advanced Settings. If the response is not relevant, you can tweak the Prompt and the Advanced Settings to make the response better.

Advanced Settings

In this section, you can change the model and tweak its settings.

Adjusting the settings allows you to fine-tune the model’s behavior to meet your needs. The default settings work fine for most cases. However, if required, you can tweak the settings and find the right balance for your use case.
Set System Context, Temperature, and Max Tokens

  • Model: The default model for which the settings are displayed. You can choose another supported mode if it’s configured. If you select a non-default model, it’s used for this node only. If you want to change the default model, you can select the model in the drop-down list and use the Mark Default option shown next to its name.
  • System Context: Add a brief description of the use case context to guide the model.
  • Temperature: The setting controls the randomness of the model’s output. A higher temperature, like 0.8 or above, can result in unexpected, creative, and less relevant responses. On the other hand, a lower temperature, like 0.5 or below, makes the output more focused and relevant.
  • Max Tokens: It indicates the total number of tokens used in the API call to the model. It affects the cost and the time taken to receive a response. A token can be as short as one character or as long as one word, depending on the text.

Advanced Controls

In this section, you can select the maximum wait time to receive a response from the LLM and decide how the bot should respond when the timeout occurs.
Timeout settings for the node

  • Timeout: Select the maximum wait time from the drop-down list. The timeout range can be any value between 10 to 60, the default being 10.
  • Timeout Error Handling: Choose how the bot should respond when the timeout occurs:
    • Close the Task and trigger Task Execution Failure Event
    • Continue with the task and transition to this node; select the node from the drop-down list.

Instance Properties

On the Instance Properties tab, you can configure the instance-specific fields for this GenAI Prompt. These settings are applicable only for this instance and will not affect any other instances of this node.

Custom Tags

In this section, you can add Custom Meta Tags to the conversation flow to profile VA-user conversations and derive business-critical insights from usage and execution metrics. You can add tags for the following:

  • Message: Define custom tags to be added to the current message in the conversation.
  • User: Define custom tags to be added to the user’s profile information.
  • Session: Define custom tags to be added to the current conversation session.

For more information on custom tags, see Custom Meta Tags.

Connections Properties

On the Connections tab, you can set the transition properties to determine the node in the dialog task to execute next. You can write conditional statements based on the values of any Entity or Context Objects in the dialog task, or you can use intents for transitions. See Adding IF-Else Conditions to Node Connections for a detailed setup guide.

Note: These conditions apply only for this instance and will not affect this node when used in any other dialog.

About Responses

All the responses collected are stored in context variables. For example, {{context.GenerativeAINode.NodeName.properties}}. You can define transitions using the context variables.
The responses are captured in a specific format, as shown below.

“context”:{
"GenerativeAINode": {
    "NodeName": {
      "id": "cmpl-7UbzLTumD9ALpfa1mcpf15dK3RnWM",
      "object": "text_completion",
      "created": 1687530223,
      "model": "text-davinci-003",
      "choices": [
        {
          "text": "\n\nI'm sorry, I'm not able to provide that information. However, I would be happy to direct you to a website that may provide the information you are looking for.",
          "index": 0,
          "logprobs": null,
          "finish_reason": "stop"
        }
      ],
      "usage": {
        "prompt_tokens": 58,
        "completion_tokens": 37,
        "total_tokens": 95
      },
      "1687530221473": [
        {
          "nodeId": "NodeName",
          "startTime": "2023-06-23T14:23:42.904Z",
          "endTime": "2023-06-23T14:23:46.029Z"
        }
      ]
    }
  }
}

GenAI Prompt (BETA)

The GenAI Prompt lets bot developers leverage the full potential of LLM and Generative AI models to quickly build their own prompts. Developers can select a specific AI model, tweak its settings, and preview the response for the prompt. The node allows developers to creatively leverage LLMs by defining the prompt using conversation context and the response from the LLMs in defining the subsequent conversation flow.

Node Behavior

Runtime

You can work with this node like with any other node within Dialog Tasks and can invoke it within multiple tasks. During runtime, the node behaves as follows:

  1. On reaching the GenAI Prompt, the platform parses any variable used in the prompt and constructs the request using the Prompt and the Advanced Settings.
  2. An API call is made to the model with the request.
  3. The response is stored in the context object as part of the dialog context and can be used to define the transitions or any other part of the bot configuration.
  4. The platform exits from the GenAI Prompt node when a successful response is received, or the defined timeout condition is met.

Enable the Node

This node is not available by default. You can enable it for all Dialog Tasks as follows:

  • Configure the Open AI integration and enable the GenAI Prompt feature under Build > Natural Language > Advanced NLU Settings. You can also select an LLM model and its settings for the features. By default, these selections are applicable across the platform for the feature. Learn more.
Note: If you do not configure an LLM model and do not enable the GenAI Prompt feature, then the node will not be available within the Dialog Builder.

Setting up a GenAI Prompt in a dialog task involves adding the node at the appropriate location in the dialog flow and configuring various properties of the node, as explained below.

Add the Node

  1. Go to Build > Conversational Skills > Dialog Tasks and select the task to which you want to add the GenAI Prompt.
  2. Use the “+” button next to the node under which you want to add the GenAI Prompt. Then, choose GenAI Prompt, and then click New GenAI Prompt. (For more information on adding nodes, see different ways to add a node.) Alternatively, you can drag and drop the GenAI Prompt node to the required location on the canvas.
  3. The GenAI Prompt window is displayed with the Component Properties tab selected by default.

Configure the Node

Component Properties

The settings made within this section affect this node across all instances in all dialog tasks.

General Settings

In this section, you can provide Name and Display Name for the node and write your own OpenAI Prompt.

  • Prompt: A prompt allows you to define the request to be sent to the LLMs for generating a response. Some of the use cases for prompts include entity or topic extraction, rephrasing, or dynamic content generation. The prompt can have up to 2000 characters, and it can be defined using text, Context, Content, and Environment variables.
  • Preview Response: Check the preview of the OpenAI response for your prompt. When you click Preview Response, the Platform parses any variable used in the prompt and constructs OpenAI request using the Prompt and the Advanced Settings. If the response is not relevant, you can tweak the Prompt and the Advanced Settings to make the response better.

Advanced Settings

In this section, you can change the model and tweak its settings.

Adjusting the settings allows you to fine-tune the model’s behavior to meet your needs. The default settings work fine for most cases. However, if required, you can tweak the settings and find the right balance for your use case.
Set System Context, Temperature, and Max Tokens

  • Model: The default model for which the settings are displayed. You can choose another supported mode if it’s configured. If you select a non-default model, it’s used for this node only. If you want to change the default model, you can select the model in the drop-down list and use the Mark Default option shown next to its name.
  • System Context: Add a brief description of the use case context to guide the model.
  • Temperature: The setting controls the randomness of the model’s output. A higher temperature, like 0.8 or above, can result in unexpected, creative, and less relevant responses. On the other hand, a lower temperature, like 0.5 or below, makes the output more focused and relevant.
  • Max Tokens: It indicates the total number of tokens used in the API call to the model. It affects the cost and the time taken to receive a response. A token can be as short as one character or as long as one word, depending on the text.

Advanced Controls

In this section, you can select the maximum wait time to receive a response from the LLM and decide how the bot should respond when the timeout occurs.
Timeout settings for the node

  • Timeout: Select the maximum wait time from the drop-down list. The timeout range can be any value between 10 to 60, the default being 10.
  • Timeout Error Handling: Choose how the bot should respond when the timeout occurs:
    • Close the Task and trigger Task Execution Failure Event
    • Continue with the task and transition to this node; select the node from the drop-down list.

Instance Properties

On the Instance Properties tab, you can configure the instance-specific fields for this GenAI Prompt. These settings are applicable only for this instance and will not affect any other instances of this node.

Custom Tags

In this section, you can add Custom Meta Tags to the conversation flow to profile VA-user conversations and derive business-critical insights from usage and execution metrics. You can add tags for the following:

  • Message: Define custom tags to be added to the current message in the conversation.
  • User: Define custom tags to be added to the user’s profile information.
  • Session: Define custom tags to be added to the current conversation session.

For more information on custom tags, see Custom Meta Tags.

Connections Properties

On the Connections tab, you can set the transition properties to determine the node in the dialog task to execute next. You can write conditional statements based on the values of any Entity or Context Objects in the dialog task, or you can use intents for transitions. See Adding IF-Else Conditions to Node Connections for a detailed setup guide.

Note: These conditions apply only for this instance and will not affect this node when used in any other dialog.

About Responses

All the responses collected are stored in context variables. For example, {{context.GenerativeAINode.NodeName.properties}}. You can define transitions using the context variables.
The responses are captured in a specific format, as shown below.

“context”:{
"GenerativeAINode": {
    "NodeName": {
      "id": "cmpl-7UbzLTumD9ALpfa1mcpf15dK3RnWM",
      "object": "text_completion",
      "created": 1687530223,
      "model": "text-davinci-003",
      "choices": [
        {
          "text": "\n\nI'm sorry, I'm not able to provide that information. However, I would be happy to direct you to a website that may provide the information you are looking for.",
          "index": 0,
          "logprobs": null,
          "finish_reason": "stop"
        }
      ],
      "usage": {
        "prompt_tokens": 58,
        "completion_tokens": 37,
        "total_tokens": 95
      },
      "1687530221473": [
        {
          "nodeId": "NodeName",
          "startTime": "2023-06-23T14:23:42.904Z",
          "endTime": "2023-06-23T14:23:46.029Z"
        }
      ]
    }
  }
}
메뉴