시작
Kore.ai 대화형 플랫폼
챗봇 개요
자연어 처리(NLP)
봇 개념 및 용어들
빠른 시작 가이드
봇 빌더 접근 방법
사용 고지 사항 (영어)
Kore.ai 봇 빌더로 작업하기
봇 구축 시작하기
릴리스 정보
현재 버전 (영어)
이전 버전 (영어)

개념
디자인
스토리보드
대화 작업
개요
Using the Dialog Builder Tool
노드 유형
사용자 의도 노드
대화 노드
엔티티 노드
양식 노드
확인 노드
서비스 노드
봇 조치 노드
Service Node
WebHook 노드
스크립트 노드
노드 그룹화하기
Agent Transfer Node
사용자 프롬프트
음성 통화 속성
대화 관리
노드 및 전환
구성 요소 전환
컨텍스트 개체
이벤트 기반 봇 조치
지식 그래프
소개
지식 추출
지식 그래프 생성
봇에 지식 그래프 추가
그래프 생성
지식 그래프 작성
FAQ 추가
작업 실행
기존 소스에서 FAQ 구축
특성, 동의어 및 불용어
변수 네임스페이스 관리
수정
용어 편집 및 삭제
용어 편집 및 삭제
질문과 응답 편집
Knowledge Graph Training
지식 그래프 분석
봇 온톨로지 가져오기 및 내보내기
지식 그래프 가져오기
지식 그래프 내보내기
지식 그래프 생성
CSV 파일에서
JSON 파일
지식 그래프 생성
경고 작업
스몰 토크
Digital Skills
디지털 양식
Views
Digital Views
Panels
Widgets
기차
봇 성능 향상 – NLP 최적화
기계 학습
소개
모델 검증
기초 의미
지식 그래프 학습
특성
순위 및 해결
고급 NLP 설정
NLP 설정 및 지침
봇 인텔리전스
소개
컨텍스트 관리
컨텍스트 관리
대화 관리
다중 – 의도 탐지
엔티티 수정
기본 대화
정서 관리
어조 분석
Test & Debug
봇과 대화
발화 테스트
배치 테스트하기
대화 테스트
배포
채널 활성화
봇 게시
분석
봇 분석하기
Conversations Dashboard
Performance Dashboard
사용자 정의 대시보드
소개
맞춤형 메타 태그
사용자 정의 대시보드 생성 방법
Conversation Flows
NLP 지표
Containment Metrics
사용량 지표
스마트 봇
소개
범용 봇
소개
범용 봇 정의
범용 봇 생성
범용 봇 학습
범용 봇 커스터마이징
범용 봇용 추가 언어 활성화
스토어
Manage Assistant
플랜 및 사용량
Overview
Usage Plans
Support Plans
플랜 관리
봇 인증
다국어 봇
개인 식별 정보 삭제하기
봇 변수 사용
IVR 통합
일반 설정
봇 관리

방법
간단한 봇 생성하기
Design Conversation Skills
뱅킹 봇 생성
뱅킹 봇 – 자금 이체
뱅킹 봇 – 잔액 업데이트
Knowledge Graph (KG) 구축
스마트 경고를 예약하는 방법
Design Digital Skills
디지털 양식 설정 방법
디지털 보기 설정 방법
데이터 테이블에 데이터를 추가하는 방법
데이터 테이블 내 데이터 업데이트 방법
UI 양식에서 데이터 테이블에 데이터를 추가하는 방법
Train the Assistant
특성 사용 방법
의도와 엔티티에 대한 패턴 사용 방법
컨텍스트 전환 관리 방법
Deploy the Assistant
상담사 전환을 설정하는 방법
봇 기능 사용 방법
콘텐츠 변수 사용 방법
전역 변수 사용 방법
Kore.ai 웹 SDK 튜토리얼
Kore.ai 위젯 SDK 튜토리얼
Analyze the Assistant
사용자 정의 대시보드 생성 방법
사용자 지정 태그를 사용하여 봇 메트릭을 필터링하는 방법

API 및 SDK
API 참조
Kore.ai API 사용
API 목록
API 컬렉션
koreUtil Libraries
SDK 참조
상담사 전환을 설정하는 방법
봇 기능 사용 방법
콘텐츠 변수 사용 방법
전역 변수 사용 방법
소개
Kore.ai 웹 SDK 튜토리얼
Kore.ai 위젯 SDK 튜토리얼

관리
소개
봇 관리자 콘솔
대시보드
사용자 관리
사용자 관리
그룹 관리
역할 관리
봇 관리 모듈
등록
사용자 초대
사용자 등록을 위한 대량 초대 보내기
사용자 및 사용자 데이터 가져오기
Active Directory에서 사용자 동기화
보안 및 준수
싱글 사인 온 사용
보안 설정
Kore.ai 커넥터
봇 관리자용 분석
Billing (지원하지 않음)
  1. Docs
  2. Virtual Assistants
  3. Analyzing Your Bot
  4. LLM and Generative AI Logs

LLM and Generative AI Logs

The LLM and Gen AI Logs on the XO Platform provide detailed information about requests sent to LLMs and the corresponding responses. The logs include data on features accessing the LLMs, response generation time, payload details, tokens used, and more. It enables bot designers to track and compare usage across various LLM features and refine prompts and settings to boost performance and user experience.

The log analysis focuses on the following key areas:

  • Request-response dynamics: Analysis of request-response dynamics between user prompts and model responses offers insights into prompt and model performance in specific scenarios.
  • Payload details: Analyzing the payload data exchanged during interactions allows for effective monitoring and optimization of advanced AI functionalities.

To access the logs, Go to Analyze > LLM and Gen AI Logs. Click any record to view the log summary and payload details.

Field Description

You can sort the data by either Newest to Oldest or Oldest to Newest. Click the click to view the Summary and Payload Details.

Fields Description
Date & Time The timestamp of the call made to the LLM. 
User ID The distinct identifier of the end user engaged in the conversation.

You can view the metrics based on the Kore User id or Channel User Id.

Channel-specific ids are shown only for the users who have interacted with the VA during the selected period.

Feature The XO Platform feature (Co-Pilot and Dynamic conversation features) is making calls to the LLM models.
Description Extra details about the node and task name linked to the feature.
Model The Large Language Model to which the request was made.
Language The language in which the conversation occurred.
If it is a multi-lingual VA, you can select specific languages to filter the conversations that occurred in those languages. The page shows the conversations that happen in all enabled languages by default.
Time Taken Time taken by the LLM to generate the response.
Status Status of a call made to the LLM. “Success” or “Failure”.
User Bot designer or end user who made a call to the LLM.
Integration Type Type of integration used (e.g. System/Custom).
Prompt Name Prompt used with the model and running at the node/task level. The pre-built prompts are named ‘Default.
Channel The communication channel or platform used for the interaction with LLM.
Session ID Identifier for the session.
Request Payload The request payload sent to a Large Language Model (LLM) is the user’s input or question, along with any extra details needed for the model to give a good response. 
Response Payload The Large Language Model (LLM) produces a response payload as its answer to the input it receives. It’s in the text format and contains additional information required to present the response. This payload helps developers use the model’s output effectively.
Request Tokens Request tokens for a Language Model (LLM) are the individual parts of input text, like words or punctuation, given to the model to create a response. These tokens are the basis for the model’s understanding and its output generation.
Response Tokens Response tokens for a Large Language Model (LLM) are the pieces of generated output, like words or punctuation, showing the model’s response. These tokens make up the structured parts of the LLM’s text, making it easier to understand and analyze.

Filter Criteria

The LLM and GenAI logs data can be viewed based on specific filter criteria that can be selected. Learn more.

 

LLM and Generative AI Logs

The LLM and Gen AI Logs on the XO Platform provide detailed information about requests sent to LLMs and the corresponding responses. The logs include data on features accessing the LLMs, response generation time, payload details, tokens used, and more. It enables bot designers to track and compare usage across various LLM features and refine prompts and settings to boost performance and user experience.

The log analysis focuses on the following key areas:

  • Request-response dynamics: Analysis of request-response dynamics between user prompts and model responses offers insights into prompt and model performance in specific scenarios.
  • Payload details: Analyzing the payload data exchanged during interactions allows for effective monitoring and optimization of advanced AI functionalities.

To access the logs, Go to Analyze > LLM and Gen AI Logs. Click any record to view the log summary and payload details.

Field Description

You can sort the data by either Newest to Oldest or Oldest to Newest. Click the click to view the Summary and Payload Details.

Fields Description
Date & Time The timestamp of the call made to the LLM. 
User ID The distinct identifier of the end user engaged in the conversation.

You can view the metrics based on the Kore User id or Channel User Id.

Channel-specific ids are shown only for the users who have interacted with the VA during the selected period.

Feature The XO Platform feature (Co-Pilot and Dynamic conversation features) is making calls to the LLM models.
Description Extra details about the node and task name linked to the feature.
Model The Large Language Model to which the request was made.
Language The language in which the conversation occurred.
If it is a multi-lingual VA, you can select specific languages to filter the conversations that occurred in those languages. The page shows the conversations that happen in all enabled languages by default.
Time Taken Time taken by the LLM to generate the response.
Status Status of a call made to the LLM. “Success” or “Failure”.
User Bot designer or end user who made a call to the LLM.
Integration Type Type of integration used (e.g. System/Custom).
Prompt Name Prompt used with the model and running at the node/task level. The pre-built prompts are named ‘Default.
Channel The communication channel or platform used for the interaction with LLM.
Session ID Identifier for the session.
Request Payload The request payload sent to a Large Language Model (LLM) is the user’s input or question, along with any extra details needed for the model to give a good response. 
Response Payload The Large Language Model (LLM) produces a response payload as its answer to the input it receives. It’s in the text format and contains additional information required to present the response. This payload helps developers use the model’s output effectively.
Request Tokens Request tokens for a Language Model (LLM) are the individual parts of input text, like words or punctuation, given to the model to create a response. These tokens are the basis for the model’s understanding and its output generation.
Response Tokens Response tokens for a Large Language Model (LLM) are the pieces of generated output, like words or punctuation, showing the model’s response. These tokens make up the structured parts of the LLM’s text, making it easier to understand and analyze.

Filter Criteria

The LLM and GenAI logs data can be viewed based on specific filter criteria that can be selected. Learn more.

 

메뉴