시작
Kore.ai 대화형 플랫폼
챗봇 개요
자연어 처리(NLP)
봇 개념 및 용어들
빠른 시작 가이드
봇 빌더 접근 방법
사용 고지 사항 (영어)
Kore.ai 봇 빌더로 작업하기
봇 구축 시작하기
릴리스 정보
현재 버전 (영어)
이전 버전 (영어)

개념
디자인
스토리보드
대화 작업
개요
Using the Dialog Builder Tool
노드 유형
사용자 의도 노드
대화 노드
엔티티 노드
양식 노드
확인 노드
서비스 노드
봇 조치 노드
Service Node
WebHook 노드
스크립트 노드
노드 그룹화하기
Agent Transfer Node
사용자 프롬프트
음성 통화 속성
대화 관리
노드 및 전환
구성 요소 전환
컨텍스트 개체
이벤트 기반 봇 조치
지식 그래프
소개
지식 추출
지식 그래프 생성
봇에 지식 그래프 추가
그래프 생성
지식 그래프 작성
FAQ 추가
작업 실행
기존 소스에서 FAQ 구축
특성, 동의어 및 불용어
변수 네임스페이스 관리
수정
용어 편집 및 삭제
용어 편집 및 삭제
질문과 응답 편집
Knowledge Graph Training
지식 그래프 분석
봇 온톨로지 가져오기 및 내보내기
지식 그래프 가져오기
지식 그래프 내보내기
지식 그래프 생성
CSV 파일에서
JSON 파일
지식 그래프 생성
경고 작업
스몰 토크
Digital Skills
디지털 양식
Views
Digital Views
Panels
Widgets
기차
봇 성능 향상 – NLP 최적화
기계 학습
소개
모델 검증
기초 의미
지식 그래프 학습
특성
순위 및 해결
고급 NLP 설정
NLP 설정 및 지침
봇 인텔리전스
소개
컨텍스트 관리
컨텍스트 관리
대화 관리
다중 – 의도 탐지
엔티티 수정
기본 대화
정서 관리
어조 분석
Test & Debug
봇과 대화
발화 테스트
배치 테스트하기
대화 테스트
배포
채널 활성화
봇 게시
분석
봇 분석하기
Conversations Dashboard
Performance Dashboard
사용자 정의 대시보드
소개
맞춤형 메타 태그
사용자 정의 대시보드 생성 방법
Conversation Flows
NLP 지표
Containment Metrics
사용량 지표
스마트 봇
소개
범용 봇
소개
범용 봇 정의
범용 봇 생성
범용 봇 학습
범용 봇 커스터마이징
범용 봇용 추가 언어 활성화
스토어
Manage Assistant
플랜 및 사용량
Overview
Usage Plans
Support Plans
플랜 관리
봇 인증
다국어 봇
개인 식별 정보 삭제하기
봇 변수 사용
IVR 통합
일반 설정
봇 관리

방법
간단한 봇 생성하기
Design Conversation Skills
뱅킹 봇 생성
뱅킹 봇 – 자금 이체
뱅킹 봇 – 잔액 업데이트
Knowledge Graph (KG) 구축
스마트 경고를 예약하는 방법
Design Digital Skills
디지털 양식 설정 방법
디지털 보기 설정 방법
데이터 테이블에 데이터를 추가하는 방법
데이터 테이블 내 데이터 업데이트 방법
UI 양식에서 데이터 테이블에 데이터를 추가하는 방법
Train the Assistant
특성 사용 방법
의도와 엔티티에 대한 패턴 사용 방법
컨텍스트 전환 관리 방법
Deploy the Assistant
상담사 전환을 설정하는 방법
봇 기능 사용 방법
콘텐츠 변수 사용 방법
전역 변수 사용 방법
Kore.ai 웹 SDK 튜토리얼
Kore.ai 위젯 SDK 튜토리얼
Analyze the Assistant
사용자 정의 대시보드 생성 방법
사용자 지정 태그를 사용하여 봇 메트릭을 필터링하는 방법

API 및 SDK
API 참조
Kore.ai API 사용
API 목록
API 컬렉션
koreUtil Libraries
SDK 참조
상담사 전환을 설정하는 방법
봇 기능 사용 방법
콘텐츠 변수 사용 방법
전역 변수 사용 방법
소개
Kore.ai 웹 SDK 튜토리얼
Kore.ai 위젯 SDK 튜토리얼

관리
소개
봇 관리자 콘솔
대시보드
사용자 관리
사용자 관리
그룹 관리
역할 관리
봇 관리 모듈
등록
사용자 초대
사용자 등록을 위한 대량 초대 보내기
사용자 및 사용자 데이터 가져오기
Active Directory에서 사용자 동기화
보안 및 준수
싱글 사인 온 사용
보안 설정
Kore.ai 커넥터
봇 관리자용 분석
Billing (지원하지 않음)
  1. Docs
  2. Virtual Assistants
  3. Builder
  4. Creation
  5. 봇 설계

봇 설계

봇 개발 전에, 여러분과 업무를 지원하는 봇과 그 기능을 이해하세요. 이해를 통해 명확하고 효율적인 봇 개발이 가능합니다.

챗봇은 사용자가 문자나 음성 인터페이스를 통해 상호 작용하는 인공 지능 시스템입니다. 이러한 상호 작용은 봇에게 일기 예보를 묻거나 은행 계좌에서 누락된 항목을 추적하는 것과 같이 간단합니다.

또한, 사용자가 제시된 항목 목록이나 인간 상담사가 참여한 대화와 유사한 구조화되지 않은 자유형 흐름에서 옵션을 선택할 수 있도록 하여 상호 작용을 구조화할 수 있습니다. 사용자 상호 작용 유형에 관계없이, 좋은 설계는 효율적인 봇 구축에 있어 도움이 됩니다. 좋은 설계를 통해 대부분의 사용자 문의에 답변하고, 모든 대화 흐름을 예상하며, 예상치 못한 결과를 예상합니다.

릴리스 버전 7.2 이후, 플랫폼에는 스토리보드 기능을 사용해 대화를 설계하는 데 도움이 되는 옵션이 있습니다. 봇 청사진 과정을 단순화하고 간소화한 직관적인 대화 디자이너이며 외부 순서도, 추적, 버전 관리 도구가 필요 없습니다. 자세한 내용은 여기를 확인하세요.

플랫폼 권장 사항: 봇을 설계할 때 다음 단계를 고려합니다.

  • 사용자 요구 사항 이해: 챗봇 범위를 설정합니다. 사업 스폰서, 사업 분석가, 제품 소유자는 시장 요구 사항을 수집하고, 내부 요구 사항을 평가하여 사용자 요구 사항을 식별하는 데 중요한 역할을 수행합니다.
  • 챗봇 목표 설정: 잘 정의된 사용 사례 생성에 도움이 됩니다. 위에서 식별한 범위를 사용 사례로 변환하는 작업을 포함합니다. 이 단계에서 봇 개발자를 참여시키는 것이 좋습니다.
  • 챗봇 대화 설계: 사용자와의 상호 작용 시 가능한 모든 시나리오에서 챗봇 동작을 정의합니다. 대화를 시뮬레이션하면 가능한 모든 시나리오를 식별하는 데 큰 도움이 됩니다.

봇 기능과 이상적인 사용 사례가 잘 정의되면 봇 개발자는 봇 작업 구성 프로세스를 시작하고, 인텐트와 엔티티를 정의하고, 대화형 대화를 구축할 수 있습니다.

챗봇 설계 시 유의할 사항: 다음 질문(전부가 아닌 일부)에 답변을 시도하세요.

  • 이용 대상은 누구입니까? 기술에 정통한 고객을 대상으로 한 기술 지원 봇은 은행 고객과 같은 일반인을 위한 지원 봇과 비교할 때 다른 설계가 필요합니다. 따라서 이용 대상을 평가하는 것은 항상 중요합니다.
  • 어떤 봇 페르소나가 이 그룹에 가장 큰 반향을 일으킬까요? 이것은 봇이 대화하는 방식을 정의하여 모든 상황에서의 행동을 지원합니다.
  • 봇의 용도는 무엇입니까? 목적(즉, 봇이 해결해야 하는 고객 문의)은 대화의 끝점을 정의합니다.
  • 봇은 어떤 불만 사항을 해결합니까? 봇의 용도와 범위가 설정되고, 봇이 처리하는 내용과 인간 상담사가 인계받아야 하는 시기를 식별합니다.
  • 봇은 당사와 고객에게 어떤 혜택을 제공합니까? 봇을 사용하여 얻는 주요 혜택은 시간 절약입니다. 사용자는 인간 상담사가 문의에 답변하도록 기다리는 데 시간을 낭비할 필요가 없습니다. 사업주인 여러분은 모든 고객의 요구 사항을 충족해야 하는 데 거기에 있지 않다고 걱정할 필요가 없습니다.
  • 내 봇이 수행했으면 하는 작업은 무엇입니까? 사용자 대화 시뮬레이션을 통해 봇이 충족해야 할 작업을 식별할 수 있습니다.
  • 봇은 어떤 채널에 존재합니까? 봇이 표시되는 방식을 어느 정도 유도할 수 있고, 챗봇에 사용 가능한 다양한 옵션은 사용되는 채널/매체에 의해 제한됩니다.
  • 내 봇은 어떤 언어를 구사해야 합니까? 다국어 커뮤니티에 서비스할 때 언어 지원은 필수이며 사전을 동시에 구축하는 것이 유용합니다.

봇 설계

봇 개발 전에, 여러분과 업무를 지원하는 봇과 그 기능을 이해하세요. 이해를 통해 명확하고 효율적인 봇 개발이 가능합니다.

챗봇은 사용자가 문자나 음성 인터페이스를 통해 상호 작용하는 인공 지능 시스템입니다. 이러한 상호 작용은 봇에게 일기 예보를 묻거나 은행 계좌에서 누락된 항목을 추적하는 것과 같이 간단합니다.

또한, 사용자가 제시된 항목 목록이나 인간 상담사가 참여한 대화와 유사한 구조화되지 않은 자유형 흐름에서 옵션을 선택할 수 있도록 하여 상호 작용을 구조화할 수 있습니다. 사용자 상호 작용 유형에 관계없이, 좋은 설계는 효율적인 봇 구축에 있어 도움이 됩니다. 좋은 설계를 통해 대부분의 사용자 문의에 답변하고, 모든 대화 흐름을 예상하며, 예상치 못한 결과를 예상합니다.

릴리스 버전 7.2 이후, 플랫폼에는 스토리보드 기능을 사용해 대화를 설계하는 데 도움이 되는 옵션이 있습니다. 봇 청사진 과정을 단순화하고 간소화한 직관적인 대화 디자이너이며 외부 순서도, 추적, 버전 관리 도구가 필요 없습니다. 자세한 내용은 여기를 확인하세요.

플랫폼 권장 사항: 봇을 설계할 때 다음 단계를 고려합니다.

  • 사용자 요구 사항 이해: 챗봇 범위를 설정합니다. 사업 스폰서, 사업 분석가, 제품 소유자는 시장 요구 사항을 수집하고, 내부 요구 사항을 평가하여 사용자 요구 사항을 식별하는 데 중요한 역할을 수행합니다.
  • 챗봇 목표 설정: 잘 정의된 사용 사례 생성에 도움이 됩니다. 위에서 식별한 범위를 사용 사례로 변환하는 작업을 포함합니다. 이 단계에서 봇 개발자를 참여시키는 것이 좋습니다.
  • 챗봇 대화 설계: 사용자와의 상호 작용 시 가능한 모든 시나리오에서 챗봇 동작을 정의합니다. 대화를 시뮬레이션하면 가능한 모든 시나리오를 식별하는 데 큰 도움이 됩니다.

봇 기능과 이상적인 사용 사례가 잘 정의되면 봇 개발자는 봇 작업 구성 프로세스를 시작하고, 인텐트와 엔티티를 정의하고, 대화형 대화를 구축할 수 있습니다.

챗봇 설계 시 유의할 사항: 다음 질문(전부가 아닌 일부)에 답변을 시도하세요.

  • 이용 대상은 누구입니까? 기술에 정통한 고객을 대상으로 한 기술 지원 봇은 은행 고객과 같은 일반인을 위한 지원 봇과 비교할 때 다른 설계가 필요합니다. 따라서 이용 대상을 평가하는 것은 항상 중요합니다.
  • 어떤 봇 페르소나가 이 그룹에 가장 큰 반향을 일으킬까요? 이것은 봇이 대화하는 방식을 정의하여 모든 상황에서의 행동을 지원합니다.
  • 봇의 용도는 무엇입니까? 목적(즉, 봇이 해결해야 하는 고객 문의)은 대화의 끝점을 정의합니다.
  • 봇은 어떤 불만 사항을 해결합니까? 봇의 용도와 범위가 설정되고, 봇이 처리하는 내용과 인간 상담사가 인계받아야 하는 시기를 식별합니다.
  • 봇은 당사와 고객에게 어떤 혜택을 제공합니까? 봇을 사용하여 얻는 주요 혜택은 시간 절약입니다. 사용자는 인간 상담사가 문의에 답변하도록 기다리는 데 시간을 낭비할 필요가 없습니다. 사업주인 여러분은 모든 고객의 요구 사항을 충족해야 하는 데 거기에 있지 않다고 걱정할 필요가 없습니다.
  • 내 봇이 수행했으면 하는 작업은 무엇입니까? 사용자 대화 시뮬레이션을 통해 봇이 충족해야 할 작업을 식별할 수 있습니다.
  • 봇은 어떤 채널에 존재합니까? 봇이 표시되는 방식을 어느 정도 유도할 수 있고, 챗봇에 사용 가능한 다양한 옵션은 사용되는 채널/매체에 의해 제한됩니다.
  • 내 봇은 어떤 언어를 구사해야 합니까? 다국어 커뮤니티에 서비스할 때 언어 지원은 필수이며 사전을 동시에 구축하는 것이 유용합니다.
메뉴