チャットBotの概要
会話型ボット
Kore.ai のアプローチ
Kore.ai 会話型プラットフォーム
ボットの概念と用語
自然言語処理 (NLP)
ボットタイプ
ボットタスク
Kore.ai プラットフォームを使う
ボットビルダーのアクセス
Kore.ai ボットビルダーを使う
ボットビルダー
ダイアログタスク
ユーザーインテントノード
ダイアログノード
エンティティノード
サポートするエンティティタイプ
複合エンティティ
サポートする色
サポートする会社名
フォームノード
ロジックノード
メッセージノード
確認ノード
サービスノード
カスタム認証の実装
サービスノード用双方向 SSL
スクリプトノード
エージェント転送ノード
Webフックノード
ノードのグループ化
接続と遷移
ダイアログの管理
プロンプトエディタ
標準ボットの構築
設計
開発 - 標準ボット
ストーリーボード
アラートタスク
アラートタスク
無視する単語 & フィールドメモリ
デジタルフォーム
デジタルビュー
知識グラフ
用語
構築
生成
ボットオントロジーのインポート/エクスポート
解析
知識の抽出
スモールトーク
初めてのボット構築
ボット構築を始める
シンプルなボットを構築
インテリジェンス
コンテキスト管理
概要
コンテキスト管理
セッションおよびコンテキスト変数
コンテキストオブジェクト
ダイアログ管理
サブインテント
エンティティの変更
複数インテントの検出
センチメント分析 (英語)
トーン分析
センチメント管理
デフォルトの会話
デフォルトの標準レスポンス
発話テスト
自然言語
概要
機械学習
ML (機械学習) モデル
基本概念
NLP (自然言語処理) の設定 & ガイドライン
知識グラフのトレーニング
示唆
ランキング & リゾルバ
高度な NLP 設定
チャネルの有効化
テスト & デバグ
ボットと会話
発話テスト
バッチテスト
会話の記録 & テスト
ボットの公開
ボットの分析
概要
ダッシュボード
カスタムダッシュボード
会話フロー
ボットメトリクス (英語)
アドバンスド トピック
ボット認証
言語管理
共同開発
IVR 統合
データ テーブル
ユニバーサル ボット
定義
構築
トレーニング
カスタマイズ
言語の有効化
スマート ボット
スマート ボットの定義
イベントベースのボットアクション
koreUtil ライブラリ
ボット設定
ボットの機能
ボット設定
PII 設定
エラーメッセージのカスタマイズ
セッションを管理する
ボット管理
ボットのバージョン
ボット変数
API ガイド
API 概要
API リスト
API コレクション
SDK
SDK 概要
SDK セキュリティ
SDK アプリ登録
Web 上の SDK チュートリアル
メッセージ形式とテンプレート
モバイル SDK プッシュ通知
ウィジット SDK チュートリアル
メッセージ形式とテンプレート
WebSocket 接続
BotKit SDK の利用
インストール
設定
イベント
機能
BotKit SDK チュートリアル - エージェント転送
BotKit SDK チュートリアル - フライト検索サンプルボット
外部 NLP エンジンの利用
ボット管理者
ボット管理者コンソール
ダッシュボード
ユーザー管理
御社ユーザーの管理
御社グループの管理
ロールを管理
ボット管理
エンロール
ユーザーの招待
一括招待
ユーザーのインポート
AD からユーザーを同期
セキュリティ & コンプライアンス
シングル サインオンを使う
セキュリティの設定
クラウド コネクタ
分析
請求処理
How To
シンプルなボットの構築
バンキングボットの構築
送金タスク
残高の更新タスク
知識グラフを作成
知識グラフへ抽出したFAQを入力
スマート アラートのスケジュール
エージェント転送の設定
パネルやウィジットの設定
デジタル ビューの設定
デジタル フォームの設定
データをデータテーブルに追加
データテーブルのデータを更新
フォームデータをデータテーブルに追加
コンテキストの切り替え
意図を使う
インテントやエンティティのパターン
エンティティ ルール
マルチ言語なボットの動き
カスタム ダッシュボード
ボット メトリクスをフィルターするためのカスタムタグ
グローバル変数
コンテンツ変数
ボット機能を使う
ボットリリースのライフサイクル
グループノードを利用したインテントのスコーピング
Kore-Unblu インテグレーション
  1. Home
  2. Docs
  3. Bots
  4. Advanced Topics
  5. Tone Analysis

Tone Analysis

The bots platform Natural Language Processing (NLP) interpreter can parse user utterances for specific words and phrases, and then provide an average tone score based on the connotation, word placement, and any added modifiers. You can use the score to help assess the user input and direct the flow of the conversation between the bot and the user.

For example, if the tone score indicates a user is angry or sad, you want to transition the bot conversation to a live agent. In a dialog task, you can access the tone score from the Context object or you can configure events to be triggered, from the Sentiment Management option under Intelligence.

Tones Types

Kore.ai bots platform evaluates user inputs to find the following six possible emotions:

  • angry
  • disgust
  • fear
  • sad
  • joy
  • positive – A special tone used to evaluate the general positivity of an utterance.

The bots platform tone algorithm provides a nuanced overview of the user utterance tone by not making the emotions mutually exclusive. For example, an input could yield a high score for fear and a mild score for sadness. Another input could yield a very high score for joy while having a negative score for sadness.

Post v8.1, the platform can identify the emojis in user utterance and set the tone accordingly.

Score Tone Emotions

The bots platform scores a tone emotion on a scale range of -3 to +3 where positive values represent an expressed tone emotion and a negative value represents a suppressed tone emotion.

For positive values, the tone emotion is explicitly communicated, while negative values are explicitly negated.

For example, a user utterance, I am happy about this news returns a positive tone score for joy, while I am not happy about this news returns a negative score for joy.

The following scale shows the relationship of the score to the level of positive expression of the tone emotion or negative suppression of the tone emotion.

  • +3 – The user definitely expressed the tone emotion.
  • +2 – The user expressed the tone emotion.
  • +1 – The user likely expressed the tone emotion.
  • 0 – The user tone emotion is neutral.
  • -1 – The user likely suppressed the tone emotion.
  • -2 – The user suppressed the tone emotion.
  • -3 – The user definitely suppressed the tone emotion.

About Tone Scores

The overall tone score is calculated as a function of the base tone value and any tone modifiers. Modifiers are generally adverbs or adjectives that supplement a tone emotion word, either to increase or decrease the base tone score.

For example, a user utterance as I am extremely disappointed returns a higher tone score for the angry tone emotion than if the user utterance is I am disappointed. Conversely, a user utterance of I am not disappointed negates the tone emotion and the tone score.

The value of the base tone and modifiers are used to calculate the final tone score for each tone emotion. The tone analyzer compiles all base tones based on the tone emotion type and then calculates the average score of each tone emotion type in the current dialog task node and the tone total score since the last reset.

Tone results are returned as Context object variables as:

  • message_tone – An array of recognized tone emotions and scores for the current node in a dialog task.
  • dialog_tone – An array of average recognized tone emotions and scores for the entire dialog task session. This value is reset at the end of each dialog session.

Each variable is populated with key/value pairs for each recognized tone emotion. Key/value pairs are not returned if a tone is not detected for an emotion. However, the NLP engine returns a tone score of 0 when a tone is recognized as neutral. When you access tone variables in the Context object, you must be able to handle positive, negative, zero, as well as undefined results.

Examples

message_tone
   0
      tone_name : positive
      level : 2
   1
      tone_name : disgust
      level : -2
   2
      tone_name : angry
      level : -2
dialog_tone
   0
      tone_name : angry
      level : -3
   1
      tone_name : sad
      level : -3
   2
      tone_name : positive
      level : 3
   3
      tone_name : joy
      level : 3

Here are some examples of test sentences with their associated tone emotion scores:
I don’t think that this is a good idea and I am not happy with how it came out, especially because of your attitude.

dialog_tone
   0
      tone_name : joy
      count : 1
      level : 0.67
   1
      tone_name : sad
      count : 1
      level : 0.5
   2
      tone_name : angry
      count : 1
      level : 0.5

This is a great idea! I’m super excited already.

dialog_tone
   0
      tone_name : joy
      count : 1
      level : 3
   1
      tone_name : sad
      count : 1
      level : 2.8
   2
      tone_name : angry
      count : 1
      level : -3
}

This was a funny and casually well-written book, a good read. But it’s a little frustrating because it abandons the narrative, if you will, without finishing it.

dialog_tone
   0
      tone_name : joy
      count : 1
      level : 1.5
   1
      tone_name : sad
      count : 1
      level : -1.5
   2
      tone_name : angry
      count : 1
      level : -1

You can access and use tone scores to help drive the flow of your dialog task using conditional transition statements. For example,

if context.message_tone.angry > 2.0
    then goTo liveAgent

For more information, refer to Context Object.

メニュー