Chatbot Overview
Conversational Bots
Intents & Entities
Intelligent Bots
Kore.ai's Approach
Kore.ai Conversational Platform
Bot Concepts and Terminology
Natural Language Processing (NLP)
Bot Types
Bot Tasks
Starting with Kore.ai Platform
How to Access Bot Builder
Working with Kore.ai Bot Builder
Building your first Bot
Getting Started with Building Bots
Using the Dialog Builder Tool
Creating a Simple Bot
Release Notes
Latest Updates
Older Releases
Deprecations
Bot Builder
Creating a Bot
Design
Develop
Storyboard
Dialog Task
User Intent Node
Dialog Node
Entity Node
Supported Entity Types
Composite Entities
Supported Time Zones
Supported Colors
Supported Company Names
Form Node
Logic Node
Message Nodes
Confirmation Nodes
Service Node
Custom Authentication
2-way SSL for Service nodes
Script Node
Agent Transfer Node
WebHook Node
Grouping Nodes
Connections & Transitions
Managing Dialogs
User Prompts
Alert Tasks
Alert Tasks
Ignore Words and Field Memory
Digital Forms
Digital Views
Knowledge Graph
Terminology
Building
Generation
Importing and Exporting
Analysis
Knowledge Extraction
Small Talk
Action & Information Task
Action Tasks
Information Tasks
Establishing Flows
Natural Language
Overview
Machine Learning
ML Model
Fundamental Meaning
NLP Settings and Guidelines
Knowledge Graph Training
Traits
Ranking and Resolver
NLP Detection
Advanced NLP Configurations
Bot Intelligence
Overview
Context Management
Session and Context Variables
Context Object
Dialog Management
Sub-Intents
Amend Entity
Multi-Intent Detection
Sentiment Management
Tone Analysis
Sentiment Management
Default Conversations
Default Standard Responses
Channel Enablement
Test & Debug
Talk to Bot
Utterance Testing
Batch Testing
Record Conversations
Publishing your Bot
Analyzing your Bot
Overview
Dashboard
Custom Dashboard
Conversation Flows
Bot Metrics
Advanced Topics
Bot Authorization
Language Management
Collaborative Development
IVR Integration
Data Table
Universal Bots
Defining
Creating
Training
Customizing
Enabling Languages
Smart Bots
Defining
Sample Bots
Github
Asana
Travel Planning
Flight Search
Event Based Bot Actions
koreUtil Libraries
Bot Settings
Bot Functions
General Settings
PII Settings
Customizing Error Messages
Manage Sessions
Bot Management
Bot Versioning
Using Bot Variables
API Guide
API Overview
API List
API Collection
SDKs
SDK Overview
SDK Security
SDK App Registration
Web SDK Tutorial
Message Formatting and Templates
Mobile SDK Push Notification
Widget SDK Tutorial
Widget SDK – Message Formatting and Templates
Web Socket Connect & RTM
Using the BotKit SDK
Installing
Configuring
Events
Functions
BotKit SDK Tutorial – Agent Transfer
BotKit SDK Tutorial – Flight Search Sample Bot
Using an External NLP Engine
Bot Administration
Bots Admin Console
Dashboard
User Management
Managing Users
Managing Groups
Managing Role
Bots Management
Enrollment
Inviting Users
Bulk Invites
Importing Users
Synchronizing Users from AD
Security & Compliance
Using Single Sign-On
Security Settings
Cloud Connector
Analytics
Billing
How Tos
Creating a Simple Bot
Creating a Banking Bot
Transfer Funds Task
Update Balance Task
Context Switching
Using Traits
Schedule a Smart Alert
Configure Digital Forms
Add Form Data into Data Tables
Configuring Digital Views
Add Data to Data Tables
Update Data in Data Tables
Custom Dashboard
Custom Tags to filter Bot Metrics
Patterns for Intents & Entities
Build Knowledge Graph
Global Variables
Content Variables
Using Bot Functions
Configure Agent Transfer
  1. Home
  2. Docs
  3. Bots
  4. Natural Language
  5. 特性

特性

自然な会話では、ユーザーが特定のシナリオについて説明しながら、背景や関連する情報を提供することがよくあります。特性は、ユーザーが会話の中で表現する特定のエンティティ、属性、または詳細を指します。発話は、特定のインテントを直接伝えるものではないかもしれませんが、発話に存在する特性は、インテント検出やBotの会話フローを動作させるために使用することができます。

例えば、「my card is being rejected and am on a business trip」という発話は、「card decline」と「emergency」という2つの特性を表現しています。このシナリオでは、発話は、直接的な意図を伝えていない、あるいはせいぜい「unblock card」フローを動作させるために使用することができます。一方で、「emergency」の特性は、会話を人間のエージェントに直接割り当てるために使用することができます。

Botプラットフォームの特性の機能は、ユーザーの発話に存在するこれらの特徴を識別し、それらをインテント検出に使用して、特徴を使用してBotの定義をカスタマイズすることを目的としています。

ユースケース

Book a FlightBotは、選択した金額に基づいてフライトを予約するための追加要件が備わっている場合があります。

I am looking for low-cost option to London」というユーザーの発話は、利用可能なフライトを選択し、最低価格のチケットを選ぶ結果が予想されます。

以下のように設定します。

  • 「low cost」という発話でトレーニングされた特性エコノミーを使用して「Travel Class」と呼ばれる特性タイプを追加します。
  • エコノミー特性の存在によってトリガーされる「book flight」というルールを追加します。
  • コンテキストに特性エコノミーが存在する場合の転送条件を追加します。

設定

特性の設定には以下が含まれます。

  • 特性の定義
  • 特性の相関ルール
  • 特性の検出

特性の定義

特性は、自然言語 > トレーニング特性セクションから定義することができます。

特性を定義する際に考慮すべき主な特徴は以下の通りです。

  1. 特性タイプは、上記の例のTravel Classのような関連する特性の集まりです。
  2. 特性タイプは、「MLベース」または「パターンベース」にすることが可能です。特性タイプの各特性は、そのタイプに基づいて、単語、フレーズ、発話、またはパターンを使用してトレーニングすることができます。特性タイプの管理では、トレーニングの設定を定義することができます。MLベースの特性の設定については、以下を参照してください
  3. 特性タイプは、1つ以上の特性を持つことができます。
  4. 特性の名前はグループ内で一意のものでなければなりません。しかし、同一の名前をもつ特性は複数のグループに存在する場合があります。
    • MLベースの特性については、特性を識別する単語、フレーズ、または発話を定義することができます。MLベースの特性タイプでは、特性タイプごとに1つの特性が検出されます。
    • パターンベースの特性では、与えられた特性に関連するパターンを定義することができます。パターンベースの特性タイプでは、複数の特性が検出される可能性があります。特性タイプ内の特性の順序は、特性タイプ内の特性の重要性を示し、1つの特性のみを検出します。
  5. 追加したら、ユーザーの発話から特性を検出するためにBotをトレーニングします。

 

  1. 複数言語のBotの場合、言語固有の特性を追加することができます。
  2. 特性名が変更された場合は、その特性を使用して定義されたすべてのルールが修正されていることを確認してください。この処理は手動で行う必要があり、プラットフォームでは行われません。
  3. 特性名はグループ内で一意のものでなければなりません。
  4. 同一の名前をもつ特性は、複数のグループに存在する可能性がありますが、特性ルールまたは特性検出結果でそれらを区別することは困難です。

特性 – MLモデル

MLモデルを用いて特性をトレーニングすることを選択する場合、デフォルトではn-gramモデルが用いられます。n-gramとは、トレーニング文の中からモデルをトレーニングするために用いる単語の連続した配列のことです。ただし、コーパスが非常に少ない場合や、一般にトレーニング文に含まれる単語が少ない場合、これは効果的ではない可能性があります。

プラットフォームのバージョン8.0から、n-gramモデルをスキップまたは使用するオプションが含まれています。さらに、「n-gram」アルゴリズムをパラメータ化するオプションが含まれています。

  • n-gramオプションを選択した場合、n-gramの最大値を設定することで、n-gramのシーケンス長を設定することができます。デフォルトでは1に設定されており、1~5の任意の整数値を設定することができます。
  • When skip-gram is selected, you can configure
    • 連続しないシーケンスに含まれる単語の数を指定シーケンス長です。デフォルトでは2に設定されており、2~4の任意の整数値を設定することができます。
    • 連続しない単語のシーケンスを形成するためにスキップできる単語数の最大スキップ距離です。この値はデフォルトでは1に設定されており、1~3の任意の整数値を設定することができます。

注:設定はすべての言語で共通しています(多言語Botの場合)が、中国語や韓国語のように、いくつかの言語では文字列がgramを作り、その他の(ラテン語ベースの)言語では単語のgramになります。

特性の相関ルール

特性ルールは、ダイアログの実行およびナレッジグラフのインテント検出を定義します。

ダイアログの実行

インテントの検出ダイアログの実行は、MLの発話やパターンと一緒に特性を利用して行うことができます。これらを行うには、ルールを追加して、インテントと必要な特性との関連付けを行う必要があります。

ルールの追加には複数の方法があります。

  1. 特性セクションから新しいルールの追加リンクを使用する
  2. インテントノードからNLPプロパティルールセクションを使用する
  3. パターンとルールセクションから与えられたインテントのルールタブを使用する

それぞれのルールは、演算子としてANDを使用して1つ以上の条件を設定することができます。与えられたインテントに対して複数の特性ルールを定義することができ、いずれかのルールが一致した場合、そのインテントは完全一致とみなされます。

ナレッジグラフインテント

ナレッジグラフは、特性を使用して検出プロセスの一部を担うことができます。そのために、それぞれの用語またはノードを一つの特性に関連付けることができます。与えられた用語は、単一の特性に関連付けることができます。

:特性は、リリース6.4以前のクラスに置き換わります。

特性の検出

グループ(特性タイプ)から1つの特性のみが検出され、「完全一致」とみなされます。

検出された特性はコンテキストオブジェクトに含まれます。コンテキストには、(特性タイプを参照することなく)識別された固有の特性が入力されます。この情報は以下のために使用されます。

  • インテントの識別
  • ダイアログの遷移
  • エンティティの追加
  • Botの定義

バッチテストレポートには、インテントAPIの検出と同様に、検出された特性に関する情報も含まれています。.

インテントの検出

ランキングおよび解決は、3つのNLエンジンと特性からの入力を取得し、分析し、可能性のある一致/完全一致を検出します。

  • インテントは、特性ルールに存在するすべての特性(ナレッジグラフの場合は1つ)が検出された場合にのみ、「完全一致」とみなされます。
  • NL分析では、検出された特性に関する情報が含まれ、NLPフローでは、検出された特性に関する情報が表示されます。

ダイアログの遷移

会話フローは特性を使用して制御することができます。ダイアログの場合、接続ルール は特性コンテキストを使用して定義することができます。これは、ダイアログのプロパティパネルの下にある接続タブから行うことができます。

特性コンテキストにはcontext.tritsを使用してアクセスすることができます。これは、インテントと一致するすべての特性の配列を返すため、使用する条件は contains となります。

Chatbot Overview
Conversational Bots
Intents & Entities
Intelligent Bots
Kore.ai's Approach
Kore.ai Conversational Platform
Bot Concepts and Terminology
Natural Language Processing (NLP)
Bot Types
Bot Tasks
Starting with Kore.ai Platform
How to Access Bot Builder
Working with Kore.ai Bot Builder
Building your first Bot
Getting Started with Building Bots
Using the Dialog Builder Tool
Creating a Simple Bot
Release Notes
Latest Updates
Older Releases
Deprecations
Bot Builder
Creating a Bot
Design
Develop
Storyboard
Dialog Task
User Intent Node
Dialog Node
Entity Node
Supported Entity Types
Composite Entities
Supported Time Zones
Supported Colors
Supported Company Names
Form Node
Logic Node
Message Nodes
Confirmation Nodes
Service Node
Custom Authentication
2-way SSL for Service nodes
Script Node
Agent Transfer Node
WebHook Node
Grouping Nodes
Connections & Transitions
Managing Dialogs
User Prompts
Alert Tasks
Alert Tasks
Ignore Words and Field Memory
Digital Forms
Digital Views
Knowledge Graph
Terminology
Building
Generation
Importing and Exporting
Analysis
Knowledge Extraction
Small Talk
Action & Information Task
Action Tasks
Information Tasks
Establishing Flows
Natural Language
Overview
Machine Learning
ML Model
Fundamental Meaning
NLP Settings and Guidelines
Knowledge Graph Training
Traits
Ranking and Resolver
NLP Detection
Advanced NLP Configurations
Bot Intelligence
Overview
Context Management
Session and Context Variables
Context Object
Dialog Management
Sub-Intents
Amend Entity
Multi-Intent Detection
Sentiment Management
Tone Analysis
Sentiment Management
Default Conversations
Default Standard Responses
Channel Enablement
Test & Debug
Talk to Bot
Utterance Testing
Batch Testing
Record Conversations
Publishing your Bot
Analyzing your Bot
Overview
Dashboard
Custom Dashboard
Conversation Flows
Bot Metrics
Advanced Topics
Bot Authorization
Language Management
Collaborative Development
IVR Integration
Data Table
Universal Bots
Defining
Creating
Training
Customizing
Enabling Languages
Smart Bots
Defining
Sample Bots
Github
Asana
Travel Planning
Flight Search
Event Based Bot Actions
koreUtil Libraries
Bot Settings
Bot Functions
General Settings
PII Settings
Customizing Error Messages
Manage Sessions
Bot Management
Bot Versioning
Using Bot Variables
API Guide
API Overview
API List
API Collection
SDKs
SDK Overview
SDK Security
SDK App Registration
Web SDK Tutorial
Message Formatting and Templates
Mobile SDK Push Notification
Widget SDK Tutorial
Widget SDK – Message Formatting and Templates
Web Socket Connect & RTM
Using the BotKit SDK
Installing
Configuring
Events
Functions
BotKit SDK Tutorial – Agent Transfer
BotKit SDK Tutorial – Flight Search Sample Bot
Using an External NLP Engine
Bot Administration
Bots Admin Console
Dashboard
User Management
Managing Users
Managing Groups
Managing Role
Bots Management
Enrollment
Inviting Users
Bulk Invites
Importing Users
Synchronizing Users from AD
Security & Compliance
Using Single Sign-On
Security Settings
Cloud Connector
Analytics
Billing
How Tos
Creating a Simple Bot
Creating a Banking Bot
Transfer Funds Task
Update Balance Task
Context Switching
Using Traits
Schedule a Smart Alert
Configure Digital Forms
Add Form Data into Data Tables
Configuring Digital Views
Add Data to Data Tables
Update Data in Data Tables
Custom Dashboard
Custom Tags to filter Bot Metrics
Patterns for Intents & Entities
Build Knowledge Graph
Global Variables
Content Variables
Using Bot Functions
Configure Agent Transfer
  1. Home
  2. Docs
  3. Bots
  4. Natural Language
  5. Traits

Traits

In natural conversations, it is very common that a user provides background / relevant information while describing a specific scenario. Traits are specific entities, attributes or details that the users express in their conversations. The utterance may not directly convey any specific intent, but the traits present in the utterance can be used in driving the intent detection and bot conversation flows.

For example, the utterance ‘my card is being rejected and am on a business trip’ expresses two traits ‘card decline’ and ‘emergency’. In this scenario, the utterance does not convey any direct intent or at best it can be used to trigger the ‘unblock card’ flow. However, the presence of ‘emergency’ trait can be used to directly assign the conversation to a human agent.

Traits feature of the Bots platform is aimed at identifying such characteristics present in user utterances and use them for intent detection and in customizing the bot definition using these characteristics.

Use Case

Book a Flight bot might have an added requirement to book a flight based on the cost preference.

User utterance: ‘I am looking for a low-cost option to London’ should result in ordering the available flights and picking the lowest-priced ticket.

This can be achieved by:

  • adding a Trait Type called Travel Class with Trait Economy trained with the utterance “low cost”
  • adding a Rule for “book flight” to be triggered in the presence of Economy Trait
  • add transition condition in case Trait Economy is present in the context

Configuration

Configuring Traits involves:

  • Trait Definition
  • Trait Association Rules
  • Trait Detection

Trait Definition

Traits can be defined from the Traits section under Natural Language -> Training.

Following are the key features to be considered while defining Traits:

  1. Trait Type will be a collection of related traits like Travel Class in the above example.
  2. Trait Type can be ‘ML Based‘ or ‘Pattern Based‘. Each trait of a trait type can be trained using words, phrases, utterances, or patterns based on the type. Manage Trait Type allows you to define the training configuration. See below for ML-based trait configuration.
  3. A Trait Type can have one or more Traits.
  4. Traits names should be unique in a group. But traits with the same name can be present in multiple groups.
    • For ML-based Traits, you can define the words, phrases, or utterances that identify the trait. One trait per trait type will be detected for ML-based trait types.
    • For Pattern-based Traits, you get to define the patterns associated with the given trait. There is a possibility of multiple traits getting detected for pattern-based trait types. Ordering of Traits within the Trait Type signifies the importance of a trait in a trait type and detects only one trait.
  5. Once added, Train the Bot for the Traits to be detected from user utterances.

 

Notes:

  1. You can add language-specific traits in the case of multi-lingual Bots.
  2. When a trait name is modified, ensure that all the rules defined using that trait are corrected. This has to be done manually, the platform will not take care of it.
  3. The trait name should be unique in a group.
  4. Traits with the same name can be present in multiple groups, but distinguishing them in trait rules or trait detection results would be difficult.

Traits – ML Model

When choosing to train traits using the ML model, by default, n-gram model is used. n-gram is the contiguous sequence of words to be used from training sentences to train the model. But this might not be effective when the corpus is very less or when the training sentences, in general, contain fewer words.

From ver 8.0 of the platform, an option has been included to skip or use the n-gram model. Further, option to parameterize the ‘n-gram’ algorithm has been included.

  • When n-gram option is selected, you can configure the n-gram Sequence Length by setting the maximum value of the n-gram. It is set to 1 by default and can be configured to any integer value between 1 and 5.
  • When skip-gram is selected, you can configure
    • sequence length specifying to the number of words to be included in a non-consecutive sequence. It is set to 2 by default and it can take any integer value between 2 and 4
    • maximum skip distance for the number of words that can be skipped to form a non-consecutive sequence of words. This value is set to 1 by default and can take any integer value from 1 to 3.

NOTE: While the settings are same for all languages (in case of multilingual bot), for some languages like Chinese and Korean sequence of characters form grams and for other (Latin-based) languages are word grams.

Trait Association Rules

Trait Rules define Dialog Execution and Knowledge Graph Intent detection.

Dialog Execution

Intent detection or Dialog execution can be achieved using traits, along with the ML utterances and patterns. To achieve this, an intent needs to be associated with the required traits by adding Rules.

There are multiple ways to add rules:

  1. From the Traits section using the Add New Rule link
  2. From the Intent Node using the Rules section under the NLP Properties
  3. From the Patterns and Rules section using the Rules tab for a given Intent.

Each rule can have one or more conditions with AND as the operator. Multiple trait rules can be defined for a given intent and the intent will be considered as a definite match if any one of the rules matches.

Knowledge Graph Intents

Knowledge Graph can also be part of the discovery process using Traits. For this, each term or node can be associated with a trait. A given term can be associated with a single Trait.

NOTE: Traits will replace the Classes from releases 6.4 and previous.

Trait Detection

Only one trait from a group (trait type) will be detected and will be considered as a ‘definite match’.

Traits detected are included in the context object. The context will be populated with unique traits identified (without reference to trait type). This information can be used in:

  • intent identification
  • dialog transition
  • entity population
  • bot definitions

Batch Testing reports also include information about traits detected as do the Find Intent API.

Intent Detection

The Ranking and Resolver gets input from the three NL engines and Traits to analyze and come up with the possible/definitive matches.

  • The intent will be considered as ‘definite match’ only if all the traits (one in case of Knowledge Graph) present in a trait rule are detected.
  • NL Analysis will include information on traits detected and the NLP Flow will show the information about traits detected.

Dialog Transition

Conversation Flow can be controlled using Traits. For a Dialog, Connection Rules can be defined using the Trait Context. This can be done from the Connection tab under the Properties Panel for the Dialog.

The Traits Context can be accessed using context.traits. It returns an array of all traits matching the intent, hence the condition to be used would be contains.

Menu