Chatbot Overview
Conversational Bots
Intents & Entities
Intelligent Bots
Kore.ai's Approach
Kore.ai Conversational Platform
Bot Concepts and Terminology
Natural Language Processing (NLP)
Bot Types
Bot Tasks
Starting with Kore.ai Platform
How to Access Bot Builder
Working with Kore.ai Bot Builder
Building your first Bot
Getting Started with Building Bots
Using the Dialog Builder Tool
Creating a Simple Bot
Release Notes
Latest Updates
Older Releases
Deprecations
Bot Builder
Creating a Bot
Design
Develop
Storyboard
Dialog Task
User Intent Node
Dialog Node
Entity Node
Supported Entity Types
Composite Entities
Supported Time Zones
Supported Colors
Supported Company Names
Form Node
Logic Node
Message Nodes
Confirmation Nodes
Service Node
Custom Authentication
2-way SSL for Service nodes
Script Node
Agent Transfer Node
WebHook Node
Grouping Nodes
Connections & Transitions
Managing Dialogs
User Prompts
Alert Tasks
Alert Tasks
Ignore Words and Field Memory
Digital Forms
Digital Views
Knowledge Graph
Terminology
Building
Generation
Importing and Exporting
Analysis
Knowledge Extraction
Small Talk
Action & Information Task
Action Tasks
Information Tasks
Establishing Flows
Natural Language
Overview
Machine Learning
ML Model
Fundamental Meaning
NLP Settings and Guidelines
Knowledge Graph Training
Traits
Ranking and Resolver
NLP Detection
Advanced NLP Configurations
Bot Intelligence
Overview
Context Management
Session and Context Variables
Context Object
Dialog Management
Sub-Intents
Amend Entity
Multi-Intent Detection
Sentiment Management
Tone Analysis
Sentiment Management
Default Conversations
Default Standard Responses
Channel Enablement
Test & Debug
Talk to Bot
Utterance Testing
Batch Testing
Record Conversations
Publishing your Bot
Analyzing your Bot
Overview
Dashboard
Custom Dashboard
Conversation Flows
Bot Metrics
Advanced Topics
Bot Authorization
Language Management
Collaborative Development
IVR Integration
Data Table
Universal Bots
Defining
Creating
Training
Customizing
Enabling Languages
Smart Bots
Defining
Sample Bots
Github
Asana
Travel Planning
Flight Search
Event Based Bot Actions
koreUtil Libraries
Bot Settings
Bot Functions
General Settings
PII Settings
Customizing Error Messages
Manage Sessions
Bot Management
Bot Versioning
Using Bot Variables
API Guide
API Overview
API List
API Collection
SDKs
SDK Overview
SDK Security
SDK App Registration
Web SDK Tutorial
Message Formatting and Templates
Mobile SDK Push Notification
Widget SDK Tutorial
Widget SDK – Message Formatting and Templates
Web Socket Connect & RTM
Using the BotKit SDK
Installing
Configuring
Events
Functions
BotKit SDK Tutorial – Agent Transfer
BotKit SDK Tutorial – Flight Search Sample Bot
Using an External NLP Engine
Bot Administration
Bots Admin Console
Dashboard
User Management
Managing Users
Managing Groups
Managing Role
Bots Management
Enrollment
Inviting Users
Bulk Invites
Importing Users
Synchronizing Users from AD
Security & Compliance
Using Single Sign-On
Security Settings
Cloud Connector
Analytics
Billing
How Tos
Creating a Simple Bot
Creating a Banking Bot
Transfer Funds Task
Update Balance Task
Context Switching
Using Traits
Schedule a Smart Alert
Configure Digital Forms
Add Form Data into Data Tables
Configuring Digital Views
Add Data to Data Tables
Update Data in Data Tables
Custom Dashboard
Custom Tags to filter Bot Metrics
Patterns for Intents & Entities
Build Knowledge Graph
Global Variables
Content Variables
Using Bot Functions
Configure Agent Transfer
  1. Home
  2. Docs
  3. Bots
  4. Chatbot Overview
  5. チャットBotの概要

チャットBotの概要

コミュニケーションは時代の初めから生活の本質でした。 テクノロジーの進化により、コミュニケーションの方法やスタイルも進化してきました。

初期の頃は、会話は人間同士の言葉や文字による交流に限られていました。 これらの交流は、通常、感情、文脈、および前の会話の認識によって導かれます。 コンピュータの出現により、交流は機械、すなわち人間と機械の交流を含むまでに拡大してきました。 コマンドベースのインターフェイスからグラフィカルユーザーインターフェイス(GUI)から会話型ユーザーインターフェイス(CUI)への移行は自然で、ニーズに基づいたものであり、この移行によってコミュニケーションが容易になりました。

CUIによって、自然な言語でユーザーと対話することができるチャットボットが登場しました。 人工知能とNLPの機能をさらに強化することで、チャットボットは自然言語でユーザーの発話を理解し、ユーザーの発話からタスクを導き出し、タスクを正常に実行するために必要な情報を抽出することができるようになりました。

AIを駆使したNLPベースのチャットボットや音声アシスタントは、最新のテクノロジーであり、最近ではすべてのビジネスに欠かせないものとなっています。

会話型ボットとは

チャットボットは、ヒト、デジタルシステム、インターネット対応のモノの間のインテリジェントな仲介役として機能する仮想アシスタントと定義できます。 アプリケーションやWebサイトの従来のグラフィカルユーザーインターフェイス(GUI)を「会話型ユーザーインターフェイス」に置き換えます。 これは、構文固有のコマンドを入力するか、アイコンをクリックすることで達成される以前の通信からのパラダイムシフトです。

チャットボットは、自然言語ベースの会話をミックスして人々とチャットするように設計することができ、応答はボタン、カレンダー、または人の応答速度を加速させる他のウィジェットの形で提供することができます。

この未来への第一歩として、AIを活用したメッセージングソリューションや会話型ボットがあります。 会話型ボットとは、インテリジェントなバーチャルエージェント、組織のアプリ、組織のWebサイト、ソーシャルプラットフォーム、メッセンジャープラットフォームなど、さまざまなデジタルメディアを介してコミュニケーションを取ることに優れた、自動的に動作するコンピュータプログラムのことです。 ユーザーは、音声やテキストを使ってこのようなボットと対話し、情報にアクセスしたり、タスクを完了させたり、取引を実行したりすることができます。

では、会話型ボットの特徴は何でしょうか? 簡単に言うと、

インテントとエンティティとは

会話型ボットは、3つの課題に直面しています。

  1. ⦁ ユーザーが何を望んでいるかを理解する – インテント検出
  2. ⦁ ユーザーが望むことを達成するために、ユーザーから必要な情報を抽出する – エンティティ抽出
  3. ⦁ ユーザーの要望を達成する – 会話/ダイアログフロー

ユーザーが何を言っても発言とみなされます。 このユーザの発言から、会話を進めるために必要なインテントとエンティティを抽出するのが会話型ボットの仕事です。 この記事の残りの部分では、次のようなユーザーの発言を考えてみます。「今週末ロンドンに飛びたい」

インテントとは、ユーザーの意図のことです。 これは通常、ユーザーの発言の中で動詞や名詞の形で出てきます。 上記のユーザー発言から、会話ボットはユーザーの意図を「飛びたい」と理解し、対応するダイアログタスクをトリガーします。

エンティティとは、ユーザーの意図で特定されたタスクを完了するためにボットが必要とするデータや情報の断片のことです。 ボットに必要なさまざまな形式のエンティティが複数存在する場合があります。 これらは、ユーザーの発言の一部として使用することも、ボットがユーザーにエンティティ値の入力を求める必要があることもあります。 例えば、上記のユーザー発言では、「ロンドン」と「今週末」は、それぞれ目的地と旅行日というエンティティの値を形成しています。 ご覧のように、「ソース」エンティティの値が欠落しているため、ボットは同じ値を入力するようにユーザーに要求する必要があります。

ここに示すように、エンティティは、場所、日付、時刻、個人などの任意のタイプにすることができます。。

インテリジェントボットの構築方法

ボットはデフォルトではスマートではありません。 ボットは機械学習ビッグデータ自然言語処理などの技術を活用して、ある程度の人工知能を発揮できるように作られています。 チャットボットは、ユーザーのニーズを認識し、ユーザーの視点や文脈を理解し、ユーザーの気分や感情に応じて応答することで、インテリジェントなものとなります。 その知能の高さが、チャットボットに会話のあらゆるシナリオを簡単に処理する能力を与えているのです。

人間を理解するための会話型ボットの鍵は、人間の意図を特定し、ユーザーの話し手から関連情報を抽出し、その行為に関連する行動やタスクをマッピングする能力です。 NLP(自然言語処理)とは、テキストの意図(インテント)と関連情報(エンティティ)をテキストから抽出する科学です。

対話を管理して複数の会話スレッドを追跡し、コンテキストを記憶し、ユーザーの声や感情に反応することで、会話に必要な人間的なタッチを与えると同時に、ユーザーに正確で適切な応答を提供することができます。

インテリジェントなボットを構築するのに役立つもう一つの側面は、ナレッジベースを持つことです。 これにより、ボットはよくある質問に静的な応答を返すことができるようになります。 ナレッジコレクションを構築することは、カテゴリーのシステムに従って、相互に依存するすべての特性と関係を持つエンティティ、アイデア、およびイベントを表現する試みです。 この構造化されたデータ分類は、ボットがユーザーのクエリに効果的かつ容易に応答するのに役立ちます。

Chatbot Overview
Conversational Bots
Intents & Entities
Intelligent Bots
Kore.ai's Approach
Kore.ai Conversational Platform
Bot Concepts and Terminology
Natural Language Processing (NLP)
Bot Types
Bot Tasks
Starting with Kore.ai Platform
How to Access Bot Builder
Working with Kore.ai Bot Builder
Building your first Bot
Getting Started with Building Bots
Using the Dialog Builder Tool
Creating a Simple Bot
Release Notes
Latest Updates
Older Releases
Deprecations
Bot Builder
Creating a Bot
Design
Develop
Storyboard
Dialog Task
User Intent Node
Dialog Node
Entity Node
Supported Entity Types
Composite Entities
Supported Time Zones
Supported Colors
Supported Company Names
Form Node
Logic Node
Message Nodes
Confirmation Nodes
Service Node
Custom Authentication
2-way SSL for Service nodes
Script Node
Agent Transfer Node
WebHook Node
Grouping Nodes
Connections & Transitions
Managing Dialogs
User Prompts
Alert Tasks
Alert Tasks
Ignore Words and Field Memory
Digital Forms
Digital Views
Knowledge Graph
Terminology
Building
Generation
Importing and Exporting
Analysis
Knowledge Extraction
Small Talk
Action & Information Task
Action Tasks
Information Tasks
Establishing Flows
Natural Language
Overview
Machine Learning
ML Model
Fundamental Meaning
NLP Settings and Guidelines
Knowledge Graph Training
Traits
Ranking and Resolver
NLP Detection
Advanced NLP Configurations
Bot Intelligence
Overview
Context Management
Session and Context Variables
Context Object
Dialog Management
Sub-Intents
Amend Entity
Multi-Intent Detection
Sentiment Management
Tone Analysis
Sentiment Management
Default Conversations
Default Standard Responses
Channel Enablement
Test & Debug
Talk to Bot
Utterance Testing
Batch Testing
Record Conversations
Publishing your Bot
Analyzing your Bot
Overview
Dashboard
Custom Dashboard
Conversation Flows
Bot Metrics
Advanced Topics
Bot Authorization
Language Management
Collaborative Development
IVR Integration
Data Table
Universal Bots
Defining
Creating
Training
Customizing
Enabling Languages
Smart Bots
Defining
Sample Bots
Github
Asana
Travel Planning
Flight Search
Event Based Bot Actions
koreUtil Libraries
Bot Settings
Bot Functions
General Settings
PII Settings
Customizing Error Messages
Manage Sessions
Bot Management
Bot Versioning
Using Bot Variables
API Guide
API Overview
API List
API Collection
SDKs
SDK Overview
SDK Security
SDK App Registration
Web SDK Tutorial
Message Formatting and Templates
Mobile SDK Push Notification
Widget SDK Tutorial
Widget SDK – Message Formatting and Templates
Web Socket Connect & RTM
Using the BotKit SDK
Installing
Configuring
Events
Functions
BotKit SDK Tutorial – Agent Transfer
BotKit SDK Tutorial – Flight Search Sample Bot
Using an External NLP Engine
Bot Administration
Bots Admin Console
Dashboard
User Management
Managing Users
Managing Groups
Managing Role
Bots Management
Enrollment
Inviting Users
Bulk Invites
Importing Users
Synchronizing Users from AD
Security & Compliance
Using Single Sign-On
Security Settings
Cloud Connector
Analytics
Billing
How Tos
Creating a Simple Bot
Creating a Banking Bot
Transfer Funds Task
Update Balance Task
Context Switching
Using Traits
Schedule a Smart Alert
Configure Digital Forms
Add Form Data into Data Tables
Configuring Digital Views
Add Data to Data Tables
Update Data in Data Tables
Custom Dashboard
Custom Tags to filter Bot Metrics
Patterns for Intents & Entities
Build Knowledge Graph
Global Variables
Content Variables
Using Bot Functions
Configure Agent Transfer
  1. Home
  2. Docs
  3. Bots
  4. Chatbot Overview
  5. Chatbot Overview

Chatbot Overview

Communication has been the essence of life from the beginning of times. With the evolution of technology, mode, and style of communication have also evolved.

In the early days, conversations were restricted to verbal and textual interaction between humans. These interactions are usually guided by emotions, context, and awareness of the previous conversation. With the advent of computers, interactions have now expanded to include machines i.e. human-machine interactions. The transition from a command-based interface to a Graphical User Interface (GUI) to a Conversational User Interface (CUI) was natural, need-based and this transition made the communication easier.

With CUI, came chatbots that interact with users in a natural language. Further enhancements using Artificial Intelligence and NLP capabilities enabled a chatbot to understand user utterance in the natural language; derive the task from the user utterance as well as extract the information required to successfully execute the task.

AI-driven, NLP-based chatbots and voice assistants are the latest in technology and a must for all businesses these days.

What are Conversational Bots?

A Conversational Bot or Chatbot is a virtual assistant that acts as an intelligent intermediary between people, digital systems, and internet-enabled things. It replaces the traditional Graphical User Interfaces (GUIs) of an application or website with a Conversational User Interface. It is a paradigm shift from the earlier communications achieved either by entering syntax-specific commands or clicking icons.

Chatbots are designed to chat with users through a combination of natural language-based conversations. Responses come in the form of buttons, calendars, or other widgets that accelerate the speed with which a user can respond.

AI-powered messaging solutions or Conversational Bots serves as the stepping stone to the future. A Conversational Bot is an automated computer program skilled in digital media communication. It communicates through intelligent virtual agents, organizations’ apps and websites, social media platforms, and messenger platforms. Users can interact with such bots using voice or text to access information, complete tasks, and execute transactions.

So what makes the Conversational Bot so special? This in a nutshell:

What are Intents & Entities?

A Conversational Bot faces three challenges:

  1. Intent Detection – Understanding what the user wants.
  2. Entity Extraction – Extracting the required information from the user to accomplish what the user wants.
  3. Dialog Flow/Conversation – Accomplishing the user wants.

Whatever the user says is considered as an Utterance. It is the task of the Conversational Bot to extract from this user utterance, the intent, and entities essential to carry a conversation. For example, let us consider the following user utterance: I want to fly to London this weekend.

An Intent is the user’s intention. It usually comes in the form of a verb or noun within the user utterance. From the above user utterance, a Conversational Bot understands the user intent as want to fly and triggers the corresponding dialog task.

Entities are a collection of data or information that the Bot requires to complete the task as identified in the user intent. There can be multiple entities in various formats that are required by the Bot. These can be a part of user utterance or the Bot needs to prompt the user for the entity values. For example, in the above user utterance, London, and this weekend form the values for the entities Destination and Travel Date respectively. As you can notice, the Source entity value is missing and the Bot needs to prompt the user for the same.

As seen, an Entity can be of any type like location, date, time, person, etc,.

How to Build Intelligent Bots?

Bots are not smart by default. They are made capable of showing some level of artificial intelligence by leveraging technologies like machine learning, big data, natural language processing, etc. A chatbot is intelligent when it is aware of user needs, understands the user’s perspective or context, and responds according to the user’s mood or emotion. Its intelligence gives the chatbot the ability to handle any scenario of a conversation with ease.

The key for a Conversational Bot to understand humans is; its ability to identify the human intentions, extract relevant information from the user utterance and map the relevant action/task against that utterance. NLP (Natural Language Processing) is the science of extracting the intention (Intent) of text and relevant information (Entity) from the text.

Managing dialogs to keep track of multiple conversation threads, remembering the context, and responding to the user tone or sentiment provides the much-needed humane touch to the conversation and at the same time serving the user with accurate and appropriate responses.

Another aspect that helps build an intelligent Bot is having a Knowledge Base. This gives the Bot an ability to respond to frequently asked questions that return static responses. Building Knowledge Collection is an attempt to represent entities, ideas, and events with all their interdependent properties and relations according to a system of categories. This structured categorization of data helps the Bot to answer user queries effectively and with ease.

Menu