GETTING STARTED
Kore.ai XO Platform
Virtual Assistants Overview
Natural Language Processing (NLP)
Concepts and Terminology
Quick Start Guide
Accessing the Platform
Working with the Builder
Building a Virtual Assistant
Using Workspaces
Release Notes
Current Version
Previous Versions
Deprecations

CONCEPTS
Design
Storyboard
Dialog Tasks
Overview
Dialog Builder
Node Types
Intent Node
Dialog Node
Entity Node
Form Node
Confirmation Node
Message Nodes
Logic Node
Bot Action Node
Service Node
Webhook Node
Script Node
Group Node
Agent Transfer
User Prompts
Voice Call Properties
Dialog Task Management
Connections & Transitions
Component Transition
Context Object
Event Handlers
Knowledge Graph
Introduction
Knowledge Extraction
Build Knowledge Graph
Add Knowledge Graph to Bot
Create the Graph
Build Knowledge Graph
Add FAQs
Run a Task
Build FAQs from an Existing Source
Traits, Synonyms, and Stop Words
Manage Variable Namespaces
Update
Move Question and Answers Between Nodes
Edit and Delete Terms
Edit Questions and Responses
Knowledge Graph Training
Knowledge Graph Analysis
Knowledge Graph Import and Export
Importing Knowledge Graph
Exporting Knowledge Graph
Creating a Knowledge Graph
From a CSV File
From a JSON file
Auto-Generate Knowledge Graph
Alert Tasks
Small Talk
Digital Skills
Digital Forms
Views
Introduction
Panels
Widgets
Feedback Survey
Train
Introduction
ML Engine
Introduction
Model Validation
FM Engine
KG Engine
Traits Engine
Ranking and Resolver
NLP Configurations
NLP Guidelines
Intelligence
Introduction
Contextual Memory
Contextual Intents
Interruption Management
Multi-intent Detection
Amending Entities
Default Conversations
Sentinment Management
Tone Analysis
Test & Debug
Talk to Bot
Utterence Testing
Batch Testing
Conversation Testing
Deploy
Channels
Publish
Analyze
Introduction
Conversations Dashboard
Performance Dashboard
Custom Dashboards
Introduction
Meta Tags
Dashboards and Widgets
Conversations History
Conversation Flows
Feedback Analytics
NLP Metrics
Containment Metrics
Usage Metrics
Smart Bots
Universal Bots
Introduction
Universal Bot Definition
Universal Bot Creation
Training a Universal Bot
Universal Bot Customizations
Enabling Languages
Store
Manage Assistant
Plan & Usage
Overview
Usage Plans
Support Plans
Invoices
Authorization
Multilingual Virtual Assistants
Masking PII Details
Variables
IVR Settings
General Settings
Assistant Management
Data Table
Table Views
App Definitions
Sharing Data Tables or Views

HOW TOs
Build a Flight Status Assistant
Design Conversation Skills
Create a Sample Banking Assistant
Create a Transfer Funds Task
Create a Update Balance Task
Create a Knowledge Graph
Set Up a Smart Alert
Design Digital Skills
Configure Digital Forms
Configure Digital Views
Add Data to Data Tables
Update Data in Data Tables
Add Data from Digital Forms
Train the Assistant
Use Traits
Use Patterns for Intents & Entities
Manage Context Switching
Deploy the Assistant
Configure an Agent Transfer
Use Assistant Functions
Use Content Variables
Use Global Variables
Web SDK Tutorial
Widget SDK Tutorial
Analyze the Assistant
Create a Custom Dashboard
Use Custom Meta Tags in Filters

APIs & SDKs
API Reference
API Introduction
API List
API Collection
koreUtil Libraries
SDK Reference
SDK Introduction
SDK Security
SDK Registration
Web Socket Connect and RTM
Using the BotKit SDK
BotKit SDK Tutorial - Blue Prism

ADMINISTRATION
Introduction
Assistant Admin Console
Administration Dashboard
User Management
Add Users
Manage Groups
Manage Roles
Assistant Management
Enrollment
Invite Users
Send Bulk Invites
Import User Data
Synchronize Users from AD
Security & Compliance
Using Single-Sign On
Security Settings
Cloud Connector
Analytics
Billing
  1. Home
  2. Docs
  3. Virtual Assistants
  4. Test your Bot
  5. Batch Testing
  6. Batch Testing15 min read

Batch Testing15 min read

Once you have built and trained your bot, the most important question that arises is how good is your bot’s learning model? So, evaluating your bot’s performance is important to delineate how good your bot understands the user utterances.

The Batch Testing feature helps you discern the ability of your bot to correctly recognize the expected intents and entities from a given set of utterances. This involves the execution of a series of tests to get a detailed statistical analysis and gauge the performance of your bot’s ML model.

To conduct a batch test, you can use predefined test suites available in the builder or create your own custom test suites. Based on your requirement, the test suites can be run to view the desired results. This option can be accessed from the Testing -> Batch Testing option from the left navigation menu.

 

Managing Test Suites

Kore.ai provides a few out-of-the-box Test Suites to perform batch testing. ‘Developer defined utterances’ and ‘Successful user utterances’ are the built-in test suites that can be run to perform Batch Testing. You can also create a New Test Suite for testing a custom set of utterances.

Developer defined utterances

This test suite validates the utterances that have been previously added and trained by the developer from Machine Learning Utterances screen. Using this test suite would mean testing collectively the entire set of utterances that a developer has added for all tasks of the bot.

Successful user utterances

This test suite includes all the end-user utterances that have successfully matched an intent and the corresponding task is fully executed. You can also find these utterances from the ‘Intent found’ section of the Analyze module.

Adding a New Test Suite

The New Test Suite enables you to import an array of test utterances collectively at once in a batch file, also known as a Dataset. The Dataset file needs to be written in CSV or JSON format and can have a maximum of 10000 utterances. You can download the sample CSV or JSON file formats as part of the test suite creation using the New Test Suite option.

 

JSON Format for Test Suite

The JSON format for creating custom suites allows you to define an array of test cases where each test case should consist of an utterance to be tested, the intent against which the utterance to be tested, and optionally define the list of expected entities to be determined from the utterance. If expected intent is a child intent, then you can also include the parent intent to be considered.

  • For Entities that have the Multi-Item enabled, values need to be given as: entity1||entity2
  • Composite Entities require the values in the following format: component1name:entityValue|component2name:entityValue2
  • The order in which the entities are to be extracted can be given as: "entityOrder":["TransferAmount", "PayeeName"]. If the order is not provided or partially provided, the platform determines the shortest route covering all the entities as the default order.
Property Name Type Description
Test Cases Array

Consists of the following:

  • input
  • intent
  • parentIntent
input String End-user Utterance. Note that if any of the utterances are beyond 3000 characters, the file upload would be rejected.
intent String

Determine the objective of an end-user utterance (can be task name or primary question in case of FAQ test case)

Post-release 7.3, this property can be used to define traits to be identified against this utterance by using the prefix “trait” for example, Trait: Trait Name1|| Trait Name2||Trait Name3

Post-release 8.0, this property can include the expected Small Talk pattern.

parentIntent String [Optional] Define parent intent to be considered if the intent is a sub-intent.
In the case of Small Talk, this field should be populated when the Small Talk is contextual follow-up intent; in case of multi-level contextual intent the parent intents should be separated by the delimiter ||
entities Array [Optional]

Consists of an array of entities to be determined from the input sentence:

  • entityValue
  • entityName
entityValue String Value of the entity expected to be determined from the utterance. You can define the expected Entity Value as a string or use a Regular Expression. For the purpose of Batch Testing, the platform flattens all entity values into string formats. Refer Entity Format Conversions for more information.
entityName String Name of the entity expected to be determined from the utterance

entityOrder

(ver7.1 onwards)

Array [Optional]

An array of entity names specifying the order in which the entities are to be extracted.

If the order is not provided or partially provided, the platform determines the shortest route covering all the entities as the default order.

 

CSV Format for Test Suite

CSV format for creating custom suites allows you to define test cases as records in CSV file where each test case should consist of an utterance to be tested, the intent against which the utterance to be tested, and optionally define entities to be determined from the utterance. If your test case requires more than one entity to detected from a sentence, then you have to include an extra row for each of the additional entities to be detected. If expected intent is a child intent, then you can also include the parent intent to be considered.


 

  • For Entities that have the Multi-Item enabled values need to be given as: entity1||entity2
  • Composite Entities require the values in the following format: component1name:entityValue|component2name:entityValue2
  • The order of extraction of entity value can be mentioned in the following format: entity3>entity4>entity1. If the order is not provided or partially provided, the platform determines the shortest route covering all the entities as the default order.
Column Name Type Description
input String Utterance given by the end-user. Note that if any of the utterances are beyond 3000 characters, the file upload would be rejected.
intent String

Determine the objective of an end-user utterance (can be task name or primary question in case of FAQ test case)

Post release 7.3, this property can be used to define traits to be identified against this utterance by using the prefix “trait” for example, Trait: Trait Name1|| Trait Name2||Trait Name3

Post-release 8.0, this property can include the expected Small Talk pattern.

parentIntent String [Optional] Define parent intent to be considered if the intent is a sub-intent
In the case of Small Talk, this field should be populated when the Small Talk is contextual follow-up intent and the intent would be matched assuming that the follow-up intent criteria is met; in the case of multi-level contextual intent the parent intents should be separated by the delimiter ||
entityValue String [Optional] Value of the entity expected to be determined from the utterance. You can define the expected Entity Value as a string or use a Regular Expression. For the purpose of Batch Testing, the platform flattens all entity values into string formats. Refer Entity Format Conversions for more information.
entityName String [Optional] Name of the entity expected to be determined from the utterance

entityOrder

(ver7.1 onwards)

Array [Optional]

An array of entity names separated by > specifying the order in which the entities are to be extracted.

If the order is not provided or partially provided, the platform defines the implicit order to process first the NER and pattern entities and then the remaining entities.

Entity Format Conversions

Entity Type Sample Entity ValueType Value in Flat Format Order of Keys
Address P.O. Box 3700 Eureka, CA 95502 P.O. Box 3700 Eureka, CA 95502
Airport { “IATA”: “IAD”, “AirportName”: “Washington Dulles International Airport”, “City”: “Washington D.C.”, “CityLocal”: “Washington”, “ICAO”: “KIAD”, “Latitude”: “38.94”, “Longitude”: “-77.46” } Washington Dulles International Airport IAD KIAD 38.94 -77.46 Washington D.C. Washington AirportName IATA ICAO Latitude Longitude City CityLocal
City Washington Washington
Country { “alpha3”: “IND”, “alpha2”: “IN”, “localName”: “India”, “shortName”: “India”, “numericalCode”: 356} IN IND 356 India India alpha2 alpha3 numericalCode localName shortName
Company or Organization Name Kore.ai Kore.ai
Color Blue Blue
Currency [{ “code”: “USD”, “amount”: 10 }] 10 USD amount code
Date 2018-10-25 2018-10-25
Date Period { “fromDate”: “2018-11-01”, “toDate”: “2018-11-30” } 2018-11-01 2018-11-30 fromDate toDate
Date Time 2018-10-24T13:03:03+05:30 2018-10-24T13:03:03+05:30
Description Sample Description Sample Description
Email user1@emaildomain.com user1@emaildomain.com
List of Items(Enumerated) Apple Apple
List of Items(Lookup) Apple Apple
Location { “formatted_address”: “8529 Southpark Cir #100, Orlando, FL 32819, USA”, “lat”: 28.439148,”lng”: -81.423733 } 8529 Southpark Cir #100, Orlando, FL 32819, USA 28.439148 -81.423733 formatted_address lat lng
Number 100 100
Person Name Peter Pan Peter Pan
Percentage 0.25 0.25
Phone Number +914042528888 +914042528888
Quantity { “unit”: “meter”, “amount”: 16093.4, “type”: “length”, “source”: “10 miles” } 16093.4 meter length 10 miles amount unit type source
String Sample String Sample String
Time T13:15:55+05:30 T13:15:55+05:30
Time Zone -04:00 -04:00
URL https://kore.ai https://kore.ai
Zip Code 32819 32819

Importing a Dataset file

  1. Click New Test Suite on the batch testing page. A dialog box to import the dataset appears.
  2. Enter a Name, Description, and choose a Dataset Type in the respective boxes for your dataset file.
  3. To import the Dataset file, click Choose File to locate and select a JSON or CSV file containing the utterances as per the Dataset Type selected.

  4. Click Create. The dataset file will appear as an option to run the test suite on the batch testing page:

Running Test Suites

The following steps will guide you on how to run a batch test on your bot and obtain a detailed analytical report on the utterances based on the test results. To get started, click Batch Testing in the Testing section on the builder.

Note: Prior to testing, it is essential to add and train your bot with a considerable number of utterances using Machine Learning.


To run a Test Suite, for example, the Developer Defined utterances, click Developer Defined Utterances followed by Run Test Suite. This will initiate the batch test for Developer defined utterances. Post-release of ver7.3, you can run the test suite against the in-development or published version of the bot.

The test will display the results as explained below. Each test run will create a test report record and displays a summary of the test result. The batch test result in the screenshot below includes the following information:

  • Last Run Date & Time that displays the date and time of the latest test run.
  • F1 Score is the weighted average of Precision and Recall i.e. (2*precision*recall)/(precision+recall).
  • Precision is the number of correctly classified utterances divided by the total number of utterances that got classified (correctly or incorrectly) to an existing task ie the ratio of true positives to all classified positives (sum of true and false positives) i.e. TP/(TP+FP).
  • Recall is the number of correctly classified utterances divided by the total number of utterances that got classified correctly to any existing task or classified incorrectly as an absence of an existing task ie the ratio of correctly classified utterances to actual matching intents/tasks (sum of true positives and false negatives) i.e. TP/(TP+FN).
  • Intent Success % that displays the percentage of correct intent recognition that has resulted from the test.
  • Entity Success % that displays the percentage of correct entities recognition that has resulted from the test.
  • Version Type identifies the version of the bot against which the test suite was run – development or published.
  • There are three possible outcomes from each test run:
    1. Success – when all records are present in the file are processed
    2. Success with a warning – when one or more records present in the suite are discarded from detection due to system error
    3. Failed – when there was a system error and the test could not be resumed post-recovery.

    Hovering over the warning/error icon will display a message suggesting the reason.

To get a detailed analysis of the test run, click the Download icon to download the test report in CSV format. You have an option to delete the test results if needed. The top section of the report comprises the summary with the following fields:

  • Bot Name
  • Report name of the test suite
  • Bot Language (post 7.3 release)
  • Run Type identifies the version of the bot against which the test suite was run – development or published.
  • Threshold Setting (post 7.3 release) detailing the NLP thresholds applied when running this test suite, this would be followed by the settings for each of the three NL engines with the following details:
    • Mode – ml, faq, or, cs
    • minThreshold
    • maxThreshold
    • exactMatchThreshold
    • isActive
    • taskMatchTolerance
    • wordCoverage
    • suggestionsCount
    • pathCoverage
  • Last Tested: Date of the latest test run for developer-defined utterances.
  • Utterance Count: Total number of utterances included in the test run.
  • Success/Failure Ratio: Total number of successfully predicted utterances divided by the total count of utterances multiplied by 100.
  • True Positive (TP): Percentage of utterances that have correctly matched expected intent.
    In the case of Small Talk, it would be when the list of expected and actual intents are the same.
    In the case of Traits, this would include the traits matched over and above the expected matches.
  • True Negative (TN): Percentage of utterances that were not expected to match any intent and they did not match. Not applicable to Small Talk.
  • False Positive (FP): Percentage of utterances that have matched an unexpected intent. In the case of Small Talk, it would be when the list of expected and actual intents are different.
  • False Negative (FN): Percentage of utterances that have not matched expected intent. In the case of Small Talk, it would be when the list of expected Small Talk intent is blank and but the actual Small Talk is mapped to an intent.


The report also provides detailed information on each of the test utterances and the corresponding results.

  • Utterances – Utterances used in the corresponding test suite.
  • Expected Intent – The intent expected to match for a given utterance, will include trait where applicable with trait prefix
  • Matched Intent – The intent that is matched for an utterance during the batch test. This will include matched traits with trait prefix (post 7.3 release). This will include matched Small Talk intents (post 8.0 release).
  • Parent Intent – The parent intent considered for matching an utterance against an intent.
  • Task State – The status of the intent or task against which the intent is identified. Possible values include Configured or Published
  • Result Type – Result categorized as True Positive or True Negative or False Positive or False Negative
  • Entity Name – The name of the entity detected from the utterance.
  • Expected EntityValue – The entity value expected to be determined during the batch test.
  • Matched EntityValue – The entity value identified from an utterance.
  • Entity Result – Result categorized as True or False to indicate whether the expected entity value is the same as the actual entity value.
  • Expected Entity Order – entity values from the input file
  • Actual Entity Order
    • if the order for all expected entities is provided, then the same is included in this column
    • if no order is provided, the system determined order will be included in the column
    • If an order is provided for some entities, then a combination of user-defined order and system-defined order will be included
  • Matched Intent’s Score – For False Positives and False Negatives, the confidence scores from FM, ML, and/or KG engines are displayed for the matched intent from the utterance. Note that the scores are given only if the engine detects the intent, which means that you may not see the scores from all three engines at all times.
  • Expected Intent’s Score – For False Positives, the confidence scores for the intent expected to match for the given utterance is given. Again the score will be given by the engines detecting the intent.
Tip: For any of the batch tests, if results indicate that your bot is unable to recognize the correct intents, you can work on improving its performance by adding or modifying utterances to the Machine Learning model.

Important Notes:

  • An optimal approach to bot NLP training is to first create a test suite of most of the use cases(user utterances) that the bot needs to identify, run it against the model and start training for the ones that failed.
  • Create/update batch testing modules for high usage utterances.
  • Publish the trained model only after detailed testing.
  • When naming the intent, ensure that the name is relatively short (3-5 words) and does not have special characters or words from the Stop Wordlist. Try to ensure the intent name is close to what the users request in their utterance.
  • Batch Test executions do not consider the context of the user. Hence you might see some False Negatives in the test results which in fact are True Positives in the actual bot when the context is taken into consideration.
Menu