Chatbot Overview
Conversational Bots
Intents & Entities
Intelligent Bots
Kore.ai's Approach
Kore.ai Conversational Platform
Bot Concepts and Terminology
Natural Language Processing (NLP)
Bot Types
Bot Tasks
Starting with Kore.ai Platform
How to Access Bot Builder
Working with Kore.ai Bot Builder
Building your first Bot
Getting Started with Building Bots
Using the Dialog Builder Tool
Creating a Simple Bot
Release Notes
Latest Updates
Older Releases
Bot Builder
Creating a Bot
Design
Develop
Dialog Task
Working with User Intent Node
Working with the Dialog Node
Working with Entity Node
Supported Entity Types
Working with Composite Entities
Supported Time Zones
Supported Colors
Supported Company Names
Working with Message Nodes
Working with the Confirmation Nodes
Working with Service Node
Implementing Custom Authentication
Enabling 2-way SSL for Service nodes
Working with Script Node
Working with Agent Transfer Node
Working with WebHook Node
Defining Connections & Transitions
Managing Dialogs
Prompt Editor
Action & Information Task
Working with Action Tasks
Working with Information Tasks
Establishing Flows
Alert Tasks
Working with Alert Tasks
Managing Ignore Words and Field Memory
Knowledge Graph
Terminology
Building Knowledge Graph
Generation of Knowledge Graph
Importing and Exporting Knowledge Graph
Knowledge Graph Analysis
Knowledge Extraction
Natural Language
Overview
Machine Learning
ML Model
Fundamental Meaning
Knowledge Graph Training
Traits
Ranking and Resolver
NLP Detection
NLP Settings and Guidelines
Bot Intelligence
Overview
Context Management
Session and Context Variables
Context Object
Dialog Management
Sub-Intents
Amend Entity
Multi-Intent Detection
Sentiment Management
Tone Analysis
Sentiment Management
Default Conversations
Default Standard Responses
Channel Enablement
Test & Debug
Talking to Bot
Utterance Testing
Batch Testing
Recording Conversations
Publishing your Bot
Analyzing your Bot
Overview
Dashboard
Custom Dashboard
Conversation Flows
Bot Metrics
Advanced Topics
Bot Authorization
Language Management
Collaborative Development
IVR Integration
Universal Bots
Defining
Creating
Customizing
Enabling Languages
Smart Bots
Defining
Sample Bots
Github
Asana
Travel Planning
Flight Search
Event Based Bot Actions
Bot Settings
Bot Functions
General Settings
PII Settings
Customizing Error Messages
Bot Management
Using Bot Variables
API Guide
API Overview
API List
API Collection
SDKs
SDK Overview
SDK Security
SDK App Registration
Kore.ai Web SDK Tutorial
Message Formatting and Templates
Mobile SDK Push Notification
Web Socket Connect & RTM
Using the BotKit SDK
Installing the BotKit SDK
BotKit SDK Configuration
Events for the BotKit SDK
Functions for the BotKit SDK
BotKit SDK Tutorial – Agent Transfer
BotKit SDK Tutorial – Flight Search Sample Bot
Using an External NLP Engine
Bot Administration
Bots Admin Console
User Management
Managing Users
Managing Groups
Managing Role
Bots Management
Enrollment
Inviting Users
Sending Bulk Invites to Enroll Users
Importing Users and User Data
Synchronizing Users from Active Directory
Security & Compliance
Overview
Using Single Sign-On
Cloud Connector
Analytics
Billing
How Tos
Context Switching
Using Traits
Live Agent Transfer
Schedule a Smart Alert
Configure Agent Transfer
Custom Dashboard
Patterns for Intents & Entities
Build Knowledge Graph
  1. Home
  2. Docs
  3. Bots
  4. Natural Language
  5. Traits

Traits

In natural conversations, it is very common that a user provides background / relevant information while describing a specific scenario. Traits are specific entities, attributes or details that the users express in their conversations. The utterance may not directly convey any specific intent, but the traits present in the utterance can be used in driving the intent detection and bot conversation flows.

For example, the utterance ‘my card is being rejected and am on a business trip’ expresses two traits ‘card decline’ and ‘emergency’. In this scenario, the utterance does not convey any direct intent or at best it can be used to trigger the ‘unblock card’ flow. However, the presence of ‘emergency’ trait can be used to directly assign the conversation to a human agent.

Traits feature of the Bots platform is aimed at identifying such characteristics present in user utterances and use them for intent detection and in customizing the bot definition using these characteristics.

Use Case

Book a Flight bot might have an added requirement to book a flight based on the cost preference.

User utterance: ‘I am looking for a low cost option to London’ should result in ordering the available flights and picking the lowest priced ticket.

This can be achieved by:

  • adding a Trait Type called Travel Class with Trait Economy trained with the utterance “low cost”
  • adding a Rule for “book flight” to be triggered in the presence of Economy Trait
  • add transition condition in case Trait Economy is present in the context

Configuration

Configuring Traits involves:

  • Trait Definition
  • Trait Association Rules
  • Trait Detection

Trait Definition

Traits can be defined from the Traits section under Natural Language -> Training.

Following are the key features to be considered while defining Traits:

  1. Trait Type will be a collection of related traits like Travel Class in the above example.
  2. Trait Type can be ‘ML Based‘ or ‘Pattern Based‘. Each trait of a trait type can be trained using words, phrases, utterances or patterns based on the type. Manage Trait Type allows you to define the training configuration.
      • ML-based trait types can be configured to set the ML threshold value between 0 and 1.

  3. A Trait Type can have one or more Traits.
  4. Traits name should be unique in a group. But trait with the same name can be present in multiple groups.
    • For ML-based Traits, you can define the words, phrases or utterances that identify the trait. One trait per trait type will be detected for ML-based trait types.
    • For Pattern-based Traits, you get to define the patterns associated with the given trait. There is a possibility of multiple traits getting detected for pattern-based trait types. Ordering of Traits within the Trait Type signifies the importance of a trait in a trait type and detect only one trait.
  5. Once added, Train the Bot for the Traits to be detected from user utterances.

Notes:

  1. You can add language specific traits in case of multi-lingual Bots.
  2. When a trait name is modified, ensure that all the rules defined using that trait are corrected. This has to be done manually, the platform will not take care of it.
  3. Trait name should be unique in a group.
  4. Traits with the same name can be present in multiple groups, but distinguishing them in trait rules or trait detection results would be difficult.

Trait Association Rules

Trait Rules define Dialog Execution and Knowledge Graph Intent detection.

Dialog Execution

Intent detection or Dialog execution can be achieved using traits, along with the ML utterances and patterns. To achieve this, an intent needs to be associated with the required traits by adding Rules.

There are multiple ways to add rules:

  1. From the Traits section using the Add New Rule link
  2. From the Intent Node using the Rules section under the NLP Properties
  3. From the Patterns and Rules section using the Rules tab for a given Intent.

Each rule can have one or more conditions with AND as the operator. Multiple trait rules can be defined for a given intent and the intent will be considered as a definite match if any one of the rules matches.

Knowledge Graph Intents

Knowledge Graph can also be part of the discovery process using Traits. For this, each term or node can be associated with a trait. A given term can be associated with a single Trait.

NOTE: Traits will replace the Classes from releases 6.4 and previous.

Trait Detection

Only one trait from a group (trait type) will be detected and will be considered as a ‘definite match’.

Traits detected are included in the context object. The context will be populated with unique traits identified (without reference to trait type). This information can be used in:

  • intent identification
  • dialog transition
  • entity population
  • bot definitions

Batch Testing reports also include information about traits detected as do the Find Intent API.

Intent Detection

The Ranking and Resolver gets input from the three NL engines and Traits to analyze and come up with the possible/definitive matches.

  • The intent will be considered as ‘definite match’ only if all the traits (one in case of Knowledge Graph) present in a trait rule are detected.
  • NL Analysis will include information on traits detected and the NLP Flow will show the information about traits detected.

Dialog Transition

Conversation Flow can be controlled using Traits. For a Dialog, Connection Rules can be defined using the Trait Context. This can be done from the Connection tab under the Properties Panel for the Dialog.

The Traits Context can be accessed using context.traits. It returns an array of all traits matching the intent, hence the condition to be used would be contains.

Menu