Chatbot Overview
Conversational Bots
Intents & Entities
Intelligent Bots
Kore.ai's Approach
Kore.ai Conversational Platform
Bot Concepts and Terminology
Natural Language Processing (NLP)
Bot Types
Bot Tasks
Starting with Kore.ai Platform
How to Access Bot Builder
Working with Kore.ai Bot Builder
Building your first Bot
Getting Started with Building Bots
Using the Dialog Builder Tool
Creating a Simple Bot
Release Notes
Latest Updates
Older Releases
Bot Builder
Creating a Bot
Design
Develop
Dialog Task
Working with User Intent Node
Working with the Dialog Node
Working with Entity Node
Supported Entity Types
Working with Composite Entities
Supported Time Zones
Supported Colors
Supported Company Names
Working with Message Nodes
Working with the Confirmation Nodes
Working with Service Node
Implementing Custom Authentication
Enabling 2-way SSL for Service nodes
Working with Script Node
Working with Agent Transfer Node
Working with WebHook Node
Defining Connections & Transitions
Managing Dialogs
Prompt Editor
Action & Information Task
Working with Action Tasks
Working with Information Tasks
Establishing Flows
Alert Tasks
Working with Alert Tasks
Managing Ignore Words and Field Memory
Knowledge Graph
Terminology
Building Knowledge Graph
Generation of Knowledge Graph
Importing and Exporting Knowledge Graph
Knowledge Graph Analysis
Knowledge Extraction
Natural Language
Overview
Machine Learning
ML Model
Fundamental Meaning
Knowledge Graph Training
Traits
Ranking and Resolver
NLP Detection
NLP Settings and Guidelines
Bot Intelligence
Overview
Context Management
Session and Context Variables
Context Object
Dialog Management
Sub-Intents
Amend Entity
Multi-Intent Detection
Sentiment Management
Tone Analysis
Sentiment Management
Default Conversations
Default Standard Responses
Channel Enablement
Test & Debug
Talking to Bot
Utterance Testing
Batch Testing
Recording Conversations
Publishing your Bot
Analyzing your Bot
Overview
Dashboard
Custom Dashboard
Conversation Flows
Bot Metrics
Advanced Topics
Bot Authorization
Language Management
Collaborative Development
IVR Integration
Universal Bots
Defining
Creating
Customizing
Enabling Languages
Smart Bots
Defining
Sample Bots
Github
Asana
Travel Planning
Flight Search
Event Based Bot Actions
Bot Settings
Bot Functions
General Settings
PII Settings
Customizing Error Messages
Bot Management
Using Bot Variables
API Guide
API Overview
API List
API Collection
SDKs
SDK Overview
SDK Security
SDK App Registration
Kore.ai Web SDK Tutorial
Message Formatting and Templates
Mobile SDK Push Notification
Web Socket Connect & RTM
Using the BotKit SDK
Installing the BotKit SDK
BotKit SDK Configuration
Events for the BotKit SDK
Functions for the BotKit SDK
BotKit SDK Tutorial – Agent Transfer
BotKit SDK Tutorial – Flight Search Sample Bot
Using an External NLP Engine
Bot Administration
Bots Admin Console
User Management
Managing Users
Managing Groups
Managing Role
Bots Management
Enrollment
Inviting Users
Sending Bulk Invites to Enroll Users
Importing Users and User Data
Synchronizing Users from Active Directory
Security & Compliance
Overview
Using Single Sign-On
Cloud Connector
Analytics
Billing
How Tos
Context Switching
Using Traits
Live Agent Transfer
Schedule a Smart Alert
Configure Agent Transfer
Custom Dashboard
Patterns for Intents & Entities
Build Knowledge Graph
  1. Home
  2. Docs
  3. Bots
  4. Advanced Topics
  5. Tone Analysis

Tone Analysis

The Bots Platform Natural Language Processing (NLP) interpreter can parse user utterances for specific words and phrases, and then provide an average tone score based on the connotation, word placement, and any added modifiers. You can use the score to help assess the user input and direct the flow of the conversation between the Bot and the user.

For example, if the tone score indicates a user is angry or sad, you might want to transition the bot conversation to a live agent. In a dialog task, you can access the tone score from the Context object. Or you can configure events to be triggered, from the Sentiment Management option under Intelligence.

Tones Types

Kore.ai Bots Platform evaluates user inputs to find the following six possible emotions:

  • angry
  • disgust
  • fear
  • sad
  • joy
  • positive – A special tone used to evaluate the general positivity of an utterance.

The Bots Platform tone algorithm provides a nuanced overview of the user utterance tone by not making the emotions mutually exclusive. For example, an input could yield a high score for fear and a mild score for sadness. Another input could yield a very high score for joy while having a negative score for sadness.

Scoring Tone Emotions

The Bots Platform scores a tone emotion on a scale range of -3 to +3 where positive values represent an expressed tone emotion and a negative value represents a suppressed tone emotion.

For positive values, the tone emotion is explicitly communicated, while negative values are explicitly negated.

For example, a user utterance, “I am happy about this news” returns a positive tone score for joy, while “I am not happy about this news” returns a negative score for joy.

The following scale shows the relationship of the score to the level of positive expression of the tone emotion or negative suppression of the tone emotion.

  • +3 – The user definitely expressed the tone emotion.
  • +2 – The user expressed the tone emotion.
  • +1 – The user likely expressed the tone emotion.
  • 0 – The user tone emotion is neutral.
  • -1 – The user likely suppressed the tone emotion.
  • -2 – The user suppressed the tone emotion.
  • -3 – The user definitely suppressed the tone emotion.

About Tone Scores

The overall tone score is calculated as a function of the base tone value and any tone modifiers. Modifiers are generally adverbs or adjectives that supplement a tone emotion word, either to increase or decrease the base tone score.

For example, a user utterance as “I am extremely disappointed” returns a higher tone score for the angry tone emotion than if the user utterance is “I am disappointed.” Conversely, a user utterance of “I am not disappointed” negates the tone emotion and the tone score.

The value of the base tone and modifiers are used to calculate the final tone score for each tone emotion. The tone analyzer compiles all base tones based on the tone emotion type and then calculates the average score of each tone emotion type in the current dialog task node and the tone total score since the last reset.

Tone results are returned as Context object variables as:

  • message_tone – An array of recognized tone emotions and scores for the current node in a dialog task.
  • dialog_tone – An array of average recognized tone emotions and scores for the entire dialog task session. This value is reset at the end of each dialog session.

Each variable is populated with key/value pairs for each recognized tone emotion. Key/value pairs are not returned if a tone is not detected for an emotion. However, the NLP engine returns a tone score of 0 when a tone is recognized as neutral. When you access tone variables in the Context object, you must be able to handle positive, negative, zero, as well as undefined results.

Examples

message_tone
   0
      tone_name : positive
      level : 2
   1
      tone_name : disgust
      level : -2
   2
      tone_name : angry
      level : -2
dialog_tone
   0
      tone_name : angry
      level : -3
   1
      tone_name : sad
      level : -3
   2
      tone_name : positive
      level : 3
   3
      tone_name : joy
      level : 3

Here are some examples of test sentences with their associated tone emotion scores:
“I don’t think that this is a good idea and I am not happy with how it came out, especially because of your attitude.”

dialog_tone
   0
      tone_name : joy
      count : 1
      level : 0.67
   1
      tone_name : sad
      count : 1
      level : 0.5
   2
      tone_name : angry
      count : 1
      level : 0.5

“This is a great idea! I’m super excited already.”

dialog_tone
   0
      tone_name : joy
      count : 1
      level : 3
   1
      tone_name : sad
      count : 1
      level : 2.8
   2
      tone_name : angry
      count : 1
      level : -3
}

“This was a funny and casually well-written book, a good read. But it’s a little frustrating because it abandons the “narrative”, if you will, without finishing it.”

dialog_tone
   0
      tone_name : joy
      count : 1
      level : 1.5
   1
      tone_name : sad
      count : 1
      level : -1.5
   2
      tone_name : angry
      count : 1
      level : -1

You can access and use tone scores to help drive the flow of your dialog task using conditional transition statements, for example,

if context.message_tone.angry > 2.0
    then goTo liveAgent

For more information, see Context Object.

Menu