GETTING STARTED
Kore.ai XO Platform
Virtual Assistants Overview
Natural Language Processing (NLP)
Concepts and Terminology
Help & Learning Resources
Quick Start Guide
Accessing the Platform
Navigating the Kore.ai XO Platform
Building a Virtual Assistant
Using Workspaces
Release Notes
Current Version
Previous Versions
Deprecations
Request a Feature
CONCEPTS
Design
Storyboard
Overview
FAQs
Conversation Designer
Overview
Dialog Tasks
Mock Scenes
Dialog Tasks
Overview
Navigate Dialog Tasks
Build Dialog Tasks
Nodes & Connections
Overview
Node Types
Intent Node
Dialog Node
Entity Node
Entity Rules
Form Node
Confirmation Node
Message Nodes
Logic Node
Bot Action Node
Service Node
Webhook Node
Script Node
Process Node
Agent Transfer
Node Connections Setup
Sub-Intent Scoping
User Prompts
Voice Call Properties
Dialog Task Management
Supported Entity Types
Supported Company Names
Supported Colors
Knowledge Graph
Introduction
Knowledge Extraction
Build Knowledge Graph
Create Node Structure
Build the Graph
Add FAQs
Add FAQs from an Existing Source
Run a Task
Traits, Synonyms, and Stop Words
Manage Variable Namespaces
Update Knowledge Graph
Introduction
Move Question and Answers Between Nodes
Edit and Delete Terms
Edit Questions and Responses
Knowledge Graph Analysis
Knowledge Graph Import and Export
Prepare Data for Import
From a CSV File
From a JSON File
Importing Knowledge Graph
Exporting Knowledge Graph
Auto-Generate Knowledge Graph
Alert Tasks
Small Talk
Digital Skills
Overview
Digital Forms
Digital Views
Introduction
Widgets
Panels
Session and Context Variables
Context Object
Train
NLP Optimization
ML Engine
Overview
Model Validation
FM Engine
KG Engine
Traits Engine
Ranking and Resolver
Training Validations
NLP Configurations
NLP Guidelines
Intelligence
Introduction
Event Handlers
Default Standard Responses
Contextual Memory
Contextual Intents
Interruption Management
Multi-intent Detection
Amending Entities
Default Conversations
Conversation Driven Dialog Builder
Sentinment Management
Tone Analysis
Test & Debug
Overview
Talk to Bot
Utterance Testing
Batch Testing
Conversation Testing
Health and Monitoring
Deploy
Channels
Publishing
Versioning
Analyze
Introduction
Overview Dashboard
Conversations Dashboard
Users Dashboard
Performance Dashboard
Custom Dashboards
Introduction
Custom Meta Tags
Create Custom Dashboard
NLP Insights
Conversations History
Conversation Flows
Analytics Dashboard Filters
Usage Metrics
Containment Metrics
Smart Bots
Universal Bots
Introduction
Universal Bot Definition
Universal Bot Creation
Training a Universal Bot
Universal Bot Customizations
Enabling Languages
Store
Manage Assistant
Plan & Usage
Overview
Usage Plans
Support Plans
Invoices
Authorization
Multilingual Virtual Assistants
Get Started
Supported Components & Features
Manage Languages
Manage Translation Services
Multiingual Virtual Assistant Behavior
Masking PII Details
Variables
Collections
IVR Settings
General Settings
Assistant Management
Manage Namespace
Data as Service
Data Table
Table Views
App Definitions
Sharing Data Tables or Views
HOW TOs
Build a Travel Planning Assistant
Travel Assistant Overview
Create a Travel Virtual Assistant
Design Conversation Skills
Create an ‘Update Booking’ Task
Create a Change Flight Task
Build a Knowledge Graph
Schedule a Smart Alert
Design Digital Skills
Configure Digital Forms
Configure Digital Views
Train the Assistant
Use Traits
Use Patterns
Manage Context Switching
Deploy the Assistant
Configure Agent Transfer
Use Bot Functions
Use Content Variables
Use Global Variables
Use Web SDK
Build a Banking Assistant
Design Conversation Skills
Create a Sample Banking Assistant
Create a Transfer Funds Task
Create a Update Balance Task
Create a Knowledge Graph
Set Up a Smart Alert
Design Digital Skills
Configure Digital Forms
Configure Digital Views
Add Data to Data Tables
Update Data in Data Tables
Add Data from Digital Forms
Train the Assistant
Composite Entities
Use Traits
Use Patterns for Intents & Entities
Manage Context Switching
Deploy the Assistant
Configure an Agent Transfer
Use Assistant Functions
Use Content Variables
Use Global Variables
Intent Scoping using Group Node
Analyze the Assistant
Create a Custom Dashboard
Use Custom Meta Tags in Filters
APIs & SDKs
API Reference
API Introduction
API List
API Collection
koreUtil Libraries
SDK Reference
SDK Introduction
SDK Security
SDK Registration
Web Socket Connect and RTM
Using the BotKit SDK
BotKit SDK Tutorial - Blue Prism
Widget SDK Tutorial
Web SDK Tutorial
ADMINISTRATION
Introduction to Admin Console
Administration Dashboard
User Management
Add Users
Manage Groups
Manage Roles
Assistant Management
Enrollment
Invite Users
Send Bulk Invites
Import User Data
Synchronize Users from AD
Security & Control
Using Single-Sign On
Security Settings
Cloud Connector
Analytics
Billing
  1. Home
  2. Docs
  3. Virtual Assistants
  4. Builder
  5. Knowledge Graph
  6. Taxonomy-based KG

Taxonomy-based KG

The Kore.ai platform provides a Taxonomy-based model in the Knowledge Graph to enhance the path qualification.

The default Knowledge Graph model works on a two-step model i.e. path qualification and followed by question matching. The path need not be fully qualified at all times. Even a partial path match (above a threshold) is considered as a qualification and the questions in these paths are used for matching the user input.

In the ‘taxonomy’ based approach, the ‘path’ should fully match at all times. The idea here is that every term in the path is equally important and only a full match of all the terms in the path should be considered as a qualification. Once a path is qualified, the questions in that path or paths will be considered for intent identification against user input. This is useful when you want to ensure that FAQs are answered from a given path only when the complete path is either present in the user’s input or disambiguated from the user to answer the most confident questions.

To achieve this, the platform allows a custom configuration settings Taxonomy-based Knowledge Graph under the Advanced NLP Configurations. By default, this setting is disabled. When enabled, the Knowledge Graph evaluates FAQs using the taxonomy-based approach.

This feature was released with v9.0 of the platform and is in (beta) state.

Use Case

Consider the following Knowledge Graph:

Any query related to accounts – opening or closing would yield in the following:

With Taxonomy enabled KG, even partial match of the node/terms will yield in a response that is useful:

Advantages

  1. Taxonomy-based KG helps disambiguate at the parent level. Nodes/terms are considered more important in the KG qualification.
  2. It allows for multiple questions within one leaf by allowing you to link existing questions to new intents.
  3. Allows you to give display names for nodes for presenting to the user.

Enabling

To enable the Taxonomy-based custom configuration settings, follow the below steps:

  1. Log in to the Kore.ai platform with valid credentials.
  2. By default, the Bot Summary page is displayed.
  3. On the left pane, click Natural Language -> Thresholds & Configurations.
  4. On the Thresholds & Configurations page, click Advanced NLP Configurations. You can configure the thresholds and configurations associated with the advanced NLP settings.
  5. In the Select a Configuration drop-down field, select Add Custom from the list.
  6. In the Custom Configuration field, type KG_Taxonomy_Based and click Enter.
  7. In the Configuration Value field, type enable and click Enter to save the configuration.

Features

Once you enable the Taxonomy-based KG, the following options are enabled:

  1. For each node/term, you can:
    • enter the Term Display Name – this is presented to the user for disambiguation
    • enable the Auto Qualify Path – this will ensure that the term is auto-qualified if any of its immediate child terms are qualified.
  2. When adding a new intent, you have the option to Link an Existing Question – this might  prove useful since the user might provide a partial input that contains one or more terms

Notes

Once you enable the Taxonomy-based KG, keep in mind the following:

  1. For the Ranking and Resolver engine the following settings would be disabled:
    • Prefer Definitive Matches, and
    • Rescoring of Intents
  2. The following settings of the Knowledge Graph engine would be ignored:
    • Path Coverage,
    • KG Suggestions Count, and
    • Proximity of Suggested Matches.
Menu